

Luciane Calixto de Araújo

Model Driven Questionnaires based on a Domain Specific

Language

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
graduação em Informática of PUC-Rio in partial
fulfillment of the requirements for the degree of
Mestre em Informática.

Advisor: Prof. Marco Antônio Casanova

Rio de Janeiro

October 2019

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

Luciane Calixto de Araujo

Model Driven Questionnaires based on a Domain Specific

Language

Dissertation presented to the Programa de Pós-graduação
em Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the Examination Committee.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antônio Luz Furtado
Departamento de Informática – PUC-Rio

Prof. Luiz André Portes Paes Leme
Departamento de Ciência da Computação - UFF

Rio de Janeiro, 03 October, 2019

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

All rights reserved.

Luciane Calixto de Araujo

The author graduated in Control and Automation Engineering

from Federal University of Santa Catarina (UFSC), Florianópolis

– Brasil in 2007. She joined the Graduate Program in Informatics

at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) in

2016.

Bibliographic data

Araujo, Luciane Calixto de

Model Driven Questionnaires based on a Domain Specific
Language / Luciane Calixto de Araujo; advisor: Marco Antonio
Casanova. – Rio de Janeiro: PUC-Rio, Departamento de
Informática, 2019.

v., 135f. : il. ; 29,7 cm

1. Dissertação (mestrado) – Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Busca por palavras-chave. 3.
DSLs. 4. Pesquisas estatísticas. 5. MDE. 6. Questionários I.
Casanova, Marco Antonio. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CCD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

To Willian, whose love, patience and support brought me here.

To mom and dad, who gave me the tools necessary to an academic pursuit.

To Malu, my little girl and my biggest privilege.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

Acknowledgements

Right after I stared the road of this research project I was blessed with my daughter,

Malu de Araujo Silva. It has been a huge challenge to balance motherhood, my

work at IBGE and this research. Still, with the support of my partner, Willian Alves

da Silva, my parents, Telma Calixto de Araujo and Edélcio Tavares de Araujo, and

my family, I’m finally reaching the finish line.

I also wouldn’t be here without the unending patience, understanding and guidance

of Professor Marco Antonio Casanova. For that, my special thank you and

admiration. His tutoring was imperative in choosing this research topic which ended

being an opportunity to acquire new and exciting knowledge and to mitigate

multiplexing between research and work.

My coworkers at IBGE contributions were invaluable. I will not cite names to avoid

being unfair. But this dissertation could not have been done without the shared

experiences and afternoon conversations while eating some cake and coffee. Thank

you all!

Thank you PUC-Rio and CNPq for providing the financial means that allowed me

to be part of the Programa de Pós-graduação em Informática.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior – Brasil (CAPES) – Finance code 001.

To all my classmates, professors and staff from the PUC-Rio Department of

Informatics, thank you for always being ready to listen and accommodate!

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

Abstract

Araujo, Luciane Calixto de; Casanova, Marco Antonio (Advisor). Model

Driven Questionnaires based on a Domain Specific Language. Rio de

Janeiro, 2019. 135p. Dissertação de Mestrado – Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

Surveys are pervasive in the modern world with its usage ranging from the

field of customer satisfaction measurement to global economic trends tracking. At

the core of survey processes is data collection which is, usually, computer aided.

The development of data collection software involves the codification of

questionnaires which vary from simple straightforward questions to complex

questionnaires in which validations, derived data calculus, triggers used to

guarantee consistency and dynamically created objects of interest are the rule. The

questionnaire specification is part of what is called survey metadata and is a key

factor for collected data and survey quality. Survey metadata establishes most of

the requirements for survey support systems including data collection software. As

the survey process is executed, those requirements need to be translated, coded and

deployed in a sequence of activities that demands strategies for being efficient and

effective. Model Driven Engineering enters this picture with the concept of

software crafted directly from models. In this context, this dissertation proposes the

usage of a Domain Specific Language (DSL) for modeling questionnaires, presents

a prototype and evaluates DSL as a strategy to reduce the gap between survey

domain experts and software developers, improve reuse, eliminate redundancy and

minimize rework.

Keywords

 model driven engineering; domain specific languages; survey

questionnaires; data collection, statistical surveys

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

Resumo

Araujo, Luciane Calixto de; Casanova, Marco Antonio (Orientador).

Questionários orientados por modelos baseados em DSL. Rio de Janeiro,

2019. 135p. Dissertação de Mestrado – Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

Pesquisas são pervasivas no mundo moderno e seu uso vai de medidas de

satisfação de consumidores ao rastreamento de tendências econômicas globais. No

centro do processo de pesquisa está a coleta de dados que é, usualmente, assistida

por computador. O desenvolvimento de software destinado à coleta de dados em

pesquisas envolve a codificação de questionários que variam de simples sequências

de questões abertas à questionários complexos nos quais validações, cálculo de

dados derivados, gatilhos para garantia de consistência e objetos de interesse

criados dinamicamente são a regra. A especificação do questionário é parte dos

metadados da pesquisa e é um fator chave na garantia da qualidade dos dados

coletados e dos resultados atingidos por uma pesquisa. São os metadados da

pesquisa que estabelecem a maior parte dos requisitos para os sistemas de suporte

a pesquisas, incluindo requisitos para o software de coleta de dados. À medida que

a pesquisa é planejada e executada, esses requisitos devem ser compreendidos,

comunicados, codificados e implantados, numa sequência de atividades que

demanda técnicas adequadas para que a pesquisa seja eficaz e efetiva. A Engenharia

Orientada a Modelos (Model Driven Engineering) propõe estratégias que visam

alcançar esse objetivo. Neste contexto, esta dissertação propõe o uso de Linguagens

de Domínio Específico (Domain-specific Languages - DSLs) para modelar

questionários, apresenta um protótipo e avalia DSLs como uma técnica para

diminuir a distância entre especialistas de domínio e desenvolvedores de software,

incentivar o reuso, eliminar a redundância e minimizar o retrabalho.

Palavras-chave

engenharia orientada a modelos; linguagens de domínio específico;

questionários de pesquisas; coleta de dados; pesquisas estatísticas

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

Table of contents

1 Introduction 14

1.1. Motivation 14

1.2. Goal and contributions 15

1.3. Dissertation structure 16

2 Why a DSL-based questionnaire? 17

2.1. Introduction 17

2.2. What is difficult about survey questionnaires? 19

2.2.1. The survey process 20

2.2.2. Survey information technology support 22

2.2.3. What is a questionnaire? 25

2.3. Software solutions for survey questionnaires 29

2.4. Model-driven Software Engineering 31

2.4.1. MDSE concepts 33

2.4.2. MDSE approaches 37

2.4.3. MDSE and survey questionnaires 39

2.5. Model-driven DSL approach for survey questionnaires 43

2.5.1. DSLs versus DSMLs 44

2.5.2. DSL benefits and risks 45

2.5.3. Existing DSLs for survey questionnaire modeling 47

2.5.4. DSL development process and tools 48

3 Survey Questionnaires Domain 53

3.1. Introduction 53

3.2. Domain scope 57

3.3. Data collection 59

3.3.1. Existing survey models 59

3.3.2. Survey and questionnaire documents 62

3.4. Domain model 62

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

3.4.1. Discussion 62

3.4.2. Domain model structural aspects 63

3.4.3. Domain model transversal concepts 69

3.4.4. Domain model behavioral aspects 70

4 SLang 75

4.1. Introduction 75

4.2. SLang design and implementation premises 76

4.3. DSLs design and implementation terminology 79

4.4. SLang 82

4.4.1. Abstract syntax 82

4.4.2. Concrete Syntax 85

4.5. SLang model transformations 93

4.6. SLang and evaluation 96

5 SInterviewer: A SLang use case 98

5.1. SInterviewer overview 99

5.2. SInterviewer and SLang 102

6 Conclusions 106

7 Bibliography 108

Appendix I 116

Appendix II 126

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

List of figures

Figure 1 - Survey process adapted from Grooves et al (2009) 21

Figure 2 - IT support for the survey process ... 24

Figure 3 - Survey inference .. 26

Figure 4 - System, model, meta model and modeling language

relationships .. 34

Figure 5 - Model transformations in traditional MDSE 35

Figure 6 - MDE traditional layers .. 36

Figure 7 - MDE approaches - adapted from Silva (2015) 37

Figure 8 - Model-drive questionnaires architecture 42

Figure 9 - Domain analysis tasks ... 57

Figure 10 – Metadata domain structural model .. 65

Figure 11 – Data and paradata structural model 69

Figure 12 - Navigation item generalization ... 71

Figure 13 - Navigation sequence through navigations items hierarchy 72

Figure 14 - Navigation items state diagram .. 73

Figure 15 - Navigation activity diagram .. 73

Figure 16 - Survey AST .. 83

Figure 17 - Navigation Item AST .. 84

Figure 18 - Expressions AST .. 85

Figure 19 - Concrete syntax color conventions .. 87

Figure 21 - SInterviewer question features ... 99

Figure 22 - Entity editor and questions ... 100

Figure 23 - SInterviewer architecture ... 101

Figure 24 - SInterviewer questionnaire navigation activities 102

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

List of tables

Table 1 - Questionnaire survey software requirements 28

Table 2 - DSLs main associated benefits and risks 46

Table 3 - DSL implementation patterns .. 51

Table 4 - Data collection results ... 61

Table 5 - Operators supported by expressions... 70

Table 6 - DSL design guidelines ... 77

Table 7 - Domain model to language concepts mapping 78

Table 8 - SLang concepts to SQL instructions mapping 94

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

List of code samples

Listing 1 - Hello world survey.. 86

Listing 2 – Survey coding example ... 88

Listing 3 - SLang dictionary code ... 89

Listing 4 - SLang theme, question set and question hierarchy 89

Listing 5 - Question Items with Triggers and Validations 90

Listing 6 - Object of interest creation specification at Theme 92

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

13

Abbreviations

AST Abstract Syntax Tree

CAPI Computer-assisted person interviewing

CATI Computer-assisted telephone interviewing

CSPA Common Statistical Production Architecture

DSL Domain-specific Language

DSML Domain-specific Modeling Language

DBMS Database Management System

DDI Data Documentation Initiative

IBGE Brazilian Institute of Geography and Statistics

GPL General Purpose Language

GSBPM Generic Statistical Business Process Model

GSIM Generic Statistical Information Model

M2T Model to Text

M2M Model to Model

MBT Model Based Testing

MDA Model-driven Architecture

MDD Model-driven Development

MDE Model-driven Engineering

MDSD Model-driven Software Development

MDSE Model-driven Software Engineering

MPS Meta Programming System

OO Object Oriented

PeNSE National Survey of Students Health

PNAD Continuous National Household Survey by Sampling

PNS National Health Survey

POF Family Budget Survey

SDMX Statistical Data and Metada eXchange

SDK Standard Development Kit

SQL Structured Query Language

UNECE United Nations Economic Commission for Europe

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

14

1
Introduction

1.1. Motivation

In this work, the term survey refers to clearly defined methods for gathering

data about specific entities with the goal of understanding a phenomenon. Among

the many approaches for surveys data collection, it is the usage of structured

questionnaires that are applied to a population or to a sample of a population. This

dissertation uses the term questionnaire-based survey domain to indicate surveys

executed using data collection strategies implemented using questionnaires.

Survey methodologies are adopted by all knowledge fields, from engineering

to social sciences. As such, the importance of surveys cannot be overstated. A

relatively new research technique, surveys have evolved from informal

unstructured presential interviews to highly complex questionnaires, that are

extensively tested and paired with strict interview rules.

Survey methodology is the product of multidisciplinary efforts to identify

principles for the design, collection, processing and analysis of data. With roots in

the mathematical, social and computer sciences, at a first look it seems that survey

methodology is a well-defined knowledge field. But that couldn’t be further from

the truth. Survey methodology information is scattered and, what on the surface

seems quite simple and straightforward, hides a large amount of complexity.

As any other area of knowledge surveys have been tremendously influenced

by information technology advances in the XX Century. Computer technology saw

processor, storage and memory capacity and performance go through a series of

improvements. At the same time, the creation of the Internet and mobile technology

have dramatically changed the way surveys are conducted. Nowadays, large scale

surveys rely heavily on information technology to guarantee results with adequate

quality at reasonable costs.

At first sight, developing software for survey data collection seems to be an

ordinary software engineering task. After all, questionnaires are forms for which a

large number of different solutions and development strategies exists. That might

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

15

be the case for small surveys or for surveys based on simple questionnaires.

Nonetheless, when analyzing large scale statistical production processes, surveys

can easily become highly complex, with its questionnaires defining intricate data

structures that have specific behaviors associated.

In engineering, complexity is frequently handled by raising abstraction levels

and it is not different in Software Engineering. Creating better abstractions has been

a constant since the first computer language was invented. Model-driven Software

Engineering (MDSE) aims at raising computer language abstraction further by

making models first class citizens. Closely related to reuse engineering and domain

engineering, the ideas behind MDSE are not new. It comes in many flavors, which

makes using it a challenging task. Research is still looking to understand how to

choose the best MDSE approach to a specific problem.

Among the possible approaches for applying MDSE, it is the usage of DSLs

as tools to create models that can be used in different ways during software

development. Would applying MDSE and, more specifically, DSLs help taming the

complexity of survey related software? What are the benefits? What are the

disadvantages? How can MDSE be used for improving software engineering

processes and quality in questionnaire-based survey domain?

1.2. Goal and contributions

This dissertation main goal is to understand the problems and advantages that

using MDSE on questionnaire-based surveys domain entails. On pursuing that goal,

the following objectives will be fulfilled:

 To provide a clear view of the state of the art in applying MDSE as a mean

to improve software development in the questionnaire-based surveys

domain;

 To prototype a DSL for modeling questionnaires called SLang;

 To evaluate the usage of a DSL for questionnaire modeling by adopting

the prototyped DSL in a practical scenario.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

16

1.3. Dissertation structure

The present work is organized following DSL development phases. Chapter

2 discusses questionnaire-based surveys domain, presents concepts and

terminology for understanding MDSE in the context of this research and describes

the theoretical background for the decisions made while prototyping SLang.

Chapter 3 focuses on analyzing and describing the statistical survey questionnaires

domain. Chapter 4 presents aspects related to the design and implementation of

SLang. Chapter 5 reports on a practical usage of SLang by using it in the context

SInterviewer, a data collection software. Chapter 6 presents the conclusions of this

research and potential future developments. It is important to point out that although

this dissertation is organized sequentially, developing SLang and SInterviewer was

an interactive and incremental process.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

17

2
Why a DSL-based questionnaire?

2.1. Introduction

Survey methodology is a multidisciplinary field that has its roots on the

mathematical, social and computer sciences. It seeks to identify principles about the

design, collection, processing and analysis of data that are linked to the cost and

quality of survey estimates. It is the survey methodology that gives us tools to reap

the benefits of research using surveys. One could think that, given its importance,

survey methodology literature would be consistent and well organized. But that is

not the case. As a matter of fact, it is widely scattered (GROVES, FOWLER JR., et

al., 2009). That fact might pose a challenge to those trying to form an overall picture

of surveys and, more specifically, of survey questionnaires. With that goal in mind,

this work first step is to explain what a survey is, from the point of view of those

creating software to support surveys. A starting point in understanding this field is

to have a formal definition of survey.

A survey is a systematic method to gather data about (a sample of) entities

with the purpose of constructing quantitative descriptors for the attributes of a larger

population from which the entities are members. Quantitative descriptors are called

statistics and represent quantitative summaries of observations on a set of elements

(GROVES, FOWLER JR., et al., 2009). As such, surveys are pervasive in the

modern world with its usage ranging from the field of customer satisfaction

measurement to global economic trends tracking. It is the research method most

commonly used to understand how societies work and to test theories of behavior

in social sciences research. In fact, most areas of knowledge, make use of surveys:

governments monthly release data on unemployment and inflation; economists and

policy makers are constantly relying on surveys to make informed decisions;

doctors use surveys as a methodology in studies and trials that map diseases and

health issues; engineers are constantly gathering data to certify quality and

reliability of products. (MOORE, MCCABE and CRAIG, 2009).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

18

From the above definition, systematic data collection is at the core of what a

survey is. Systematic data collection can be done in many ways. Surveys can use

administrative records, interviews, instrument-based measurements, among many

other data collection strategies. Still, the usage of a questionnaire is by far the most

common data collection strategy (SARIS and GALHOFER, 2014). In

questionnaire-based surveys, it is the questionnaire that gives meaning to the

collected data. It is through the questionnaire questions that data can be understood

and becomes information.

In the early days of surveys, little attention was given to how to formalize a

questionnaire, how to conduct a questionnaire-based interview and how to word

questions. Interview organization and execution would lie on the interviewer’s

perspective and experience. An interviewer would receive a list of objectives, such

as age, occupation, education and from that list would choose how to conduct the

interview. But surveys usage grew fueled by the evolution of methods that made

data collection progressively quicker and cheaper (GROVES, FOWLER JR., et al.,

2009). As the demand for surveys grew, the impact of careful planning and clear

definitions changed the way surveys were done.

One of the forces behind this expansion was the evolution of survey

methodologies and techniques. The other was technology. It was technology that

made viable the migration from face-to-face interviews to mail in first half of the

twenty century. Telephone interviews became popular between the 60’s and the

90’s using Computer-assisted Telephone Interviewing (CATI), followed, more

recently, by the use of Internet and mobile technology, which gave birth to

Computer-assisted Personal Interviewing (CAPI). Each new technology enhanced

and extended the range of opportunities and possibilities for survey researchers as

well as introduced new challenges and issues (GROVES, 2011).

In 2005, five trends were pointed in the universe of surveys: (1) the move

from interviewer-administered to self-administered surveys; (2) the move from

verbal (written or spoken) inputs and outputs to visual and haptic or sensorimotor

inputs and outputs; (3) the move from fixed to mobile information and

communication technology, for data collectors and for respondents; (4) the move

from discrete surveys to continuous measurement; and (5) the move from data only,

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

19

to data, metadata and paradata1. The implications of those trends, as they

progressively took place in the universe of surveys, are the multiplication of survey

data collection modes, survey data collection process democratization, an increased

specialization due to the proliferation of new methods, a higher demand for

communication between areas of expertise along the statistical survey production

chain, among others (COUPER, 2005). As of 2019, most of these trends are no

longer trends, but became common practice demanding responses for each of the

challenges imposed by technology evolution and its impact on survey practices.

Right at the center of those challenges is the data collection software. Data

collection software enables self-administered surveys, allows the usage of new

input types and evolves constantly to support new methods and medias. Data

collection software also has to be available in a multi-platform environment and

provide tools that enable continuous measurement while collecting paradata.

It is in this context, that the concept of a DSL-based questionnaire comes

alive. This chapter focuses on describing the reality surrounding questionnaire-

based survey software. Section 2.2 discusses what is hard about questionnaires and

statistical survey data collection software, followed by an overview of tools

available for statistical survey data collection in section 2.3. In section 2.4 the main

concepts involved in model driven software development are presented. Finally,

section 2.5 contains the statement of our research problem and goals.

2.2. What is difficult about survey questionnaires?

The present work focuses on questionnaire-based surveys in which the

questionnaire plays a central whole as the survey measurement instrument.

Questionnaire-based surveys are the most common approach for research in the

social, economic and behavioral fields. For example, the number of articles and

publications in the field of sociology, in which research was done using a

questionnaire to collect data, increased from 24.1% in 1949-1950 to 69.7% in 1994-

1995. In the field of economics the increase was of 5.7% to 42.3% in the same

period (SARIS and GALHOFER, 2014).

1 In the context of statistical surveys metadata is data about the collected data and paradata is

data about the data collection process (Couper, 1998).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

20

A superficial look, might lead to the wrong conclusion that a survey

questionnaire is just set of questions, displayed as a form to be filled up. Sometimes

that might be true. It is even fair to say that most questionnaires are, in fact, simple,

with few and straightforward questions. But that is not always the case and

underestimating questionnaire design complexity is a common and serious error

when conducting surveys (SARIS and GALHOFER, 2014).

For instance, large surveys such as the Brazilian Agricultural Census (IBGE,

2017), have questionnaires that involve around a thousand quantitative measures,

with intricate rules to define which questions should be part of the questionnaire, in

which order those questions should be presented and what validation rules should

be performed as each answer is registered. Besides the complexities hidden in the

questionnaire specification, there are also a series of issues related to data collection

strategy that directly affect questionnaire software requirements. For example, a

survey might involve multi-mode data collection, such as the usage of self-response

through the Internet and interviews conducted with the support of mobile apps,

demand sampling parameters integration in data collection software or involve the

usage of custom applications that contemplate requirements not related with the

questionnaire2. Those are just a few examples of the complexities hidden in a survey

questionnaire and in the software that supports it. For a full understanding of what

is at stake when designing a questionnaire and a survey data collection strategy

section 2.2.1 presents the survey process and section 2.2.2 sheds some light on

survey IT support.

2.2.1.The survey process

The first step in understanding survey data collection complexity is to know

the context in which the questionnaires are created and used: the survey process.

The United Nations Economic Commission for Europe (UNECE) built a

standard business model to describe statistical production processes and its

activities known as the Generic Statistical Business Process Model (GSBPM). This

process was compiled from models and patterns established by statistical offices in

2 For example, in the 2017 Brazilian Agricultural Census, before starting the questionnaire

the interviewer had to execute an address confirmation with geolocation data collection. Given the

cost associated with going to each and every rural property in a country, a census survey is a unique

opportunity to collect all sorts of data about a country territory and its people.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

21

an effort to establish a standard. Although very through in terms of the activities

involved in running a survey, the GSBPM process does not include an activity flow

and can be seen as a taxonomy that identifies the activities conducted by statistical

offices (COTTON and GILLMAN, 2015). As such, in the context of this

dissertation, the GSBPM fails to provide a good overview of the survey process.

Grooves et al. (2009) propose a survey process that approaches survey

activities from a macro level. It provides a clear overview of the main survey

activities while giving an idea of how those activities are organized in time.

Figure 1 - Survey process adapted from Grooves et al (2009)

The proposed process starts with the research objectives definition (activity

1). With the research objectives fully understood and clearly stated, research themes

to cover research objectives are selected. Next, for each theme, measures are created

that express variables, conditions, criteria, causes and effects that are the focus of

the survey (UNITED STATES GENERAL ACCOUNTING OFFICE, 1993). Next,

activities are related to the data collection strategy definition (activities 4 and 5) and

the sampling specification (activities 2 and 3). Those activities can be executed in

parallel.

Defining a data collection strategy involves choosing data collection modes

and making the technology to support them. These decisions are closely related to

costs, questions formulation and data quality affecting all survey aspects. Next, it

is necessary to translate de the concepts measured by the variables selected in

activity 1 into questions, thus creating a questionnaire. Once the questionnaire is

created, it has to be tested (SARIS and GALHOFER, 2014).

Sampling is closely related to data statistical analysis and it is a key step to

guarantee survey quality. A sampling frame, such as a list of names and addresses

of potential respondents, is needed and a procedure to select a limited number of

units to describe this population must be clearly established. Choosing a sampling

frame is choosing what population the survey will report on (SARIS and

GALHOFER, 2014).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

22

Once the research objectives are clearly stated, data collection is planned,

questionnaire is designed/tested, and sampling is specified the survey planning is

over and it is time to perform data collection (activity 6). In this stage, monitoring

data collection operation is key to guaranteeing survey coverage and data quality.

After the data have been collected, it goes through preliminary processing and

analysis phase (activity 7). In this stage, data can be adjusted and additional data

analysis can be carried out, such as coding open-ended answer questions (questions

that do not have predefined choices) and performing quality checks. This is also the

time for defining if it will be the necessary to generate data derived from the

collected data. Based on the previous activity results, adjustments are executed to

adequate the data (activity 8) and the final data analysis, with a focus on answering

research questions, is performed (activity 9).

The survey process clarifies what is the questionnaire usage context. Next, it

is important to understand the relationship between the survey methodology and

Information Technology (IT).

2.2.2.Survey information technology support

There is no survey without some degree of IT. For simple, small scale surveys

little IT support is necessary and tools used in personal computing (such as text

editors and spreadsheet processors) are sufficient. As the survey goals grow in

complexity and size, IT acquires relevance and IT decisions became directly related

to survey feasibility. Those decisions play a relevant role in all steps of the survey

process with a large influence on questionnaire design and survey data quality.

The main goal of IT in a survey process is to support the acquisition, storage,

processing and analysis of the data. Figure 2 presents an example of IT architecture

that support survey processes. This architecture is intended to fulfill the demands

of an organization that handles concurrently the operation of multiple surveys with

a high level of complexity, such as official government statistics bureaus. The

architecture also presents some common issues as described next.

On the architecture diagram, each of the six ellipses represents a system:

metadata system, data collection system, data collection management system,

tabulation system, microdata system, publication system. The arrows connecting

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

23

systems and data storages represent data flow. Doted arrows indicate that data is

not formally shared using the IT infrastructure.

In the architecture diagram three kinds of data with their respective storages

are contemplated: collected data, metadata or data about the collected data, and

paradata or data about the data collection process (COUPER, 1998). Collected data

are core to the survey and its “raison d’etre”. Paradata main role are to feed data

collection management systems, thereby helping to detect and understand issues as

the data collection operation is performed. Metadata are produced mainly during

the planning phase of a survey. But, given the difficulties involved in data

collection, metadata usually assume a background role and gets scattered through

the survey IT architecture. This results in multiple views of what the collected data

are, and it can become an inconsistency source and make data reuse harder.

It is during the survey planning phase that the metadata system realizes its

main function, which is to create and store survey metadata including themes,

variables, questionnaires and sampling information. Two attention points are in

order when discussing survey metadata systems. First, metadata should have a

single expression in the IT infrastructure and be formally integrated. If that is not

the case, each of the systems in the architecture will have their own survey and

questionnaire views and survey metadata gets scattered. Metadata scattering

generates redundancy, rework and inconsistency among the different systems. A

second issue is that whenever starting a new survey, during the planning phase, it

should be easy to reuse survey metadata. But legacy systems and data pose a barrier.

It is hard to keep up with technological evolution as software platforms, techniques

and best practices improve and change. Still, data reuse should be always

considered when evolving IT infrastructure.

After the planning phase, survey metadata is created, and data collection

begins. The data collection system includes all the software in which collected data

is “inputed”. It is used to test the questionnaire and to perform the actual data

collection operation. Both the collected data and paradata are produced by the data

collection system. Besides the issues due to questionnaire complexity (this will be

discussed in the next section), the main challenge posed by data collection systems

is that sometimes the selected data collection strategy demands the usage of

multiple technological platforms. For example, that is the case when mobile and

web platforms are used concurrently to collect survey data. This scenario can easily

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

24

lead to multiple implementations based on the same questionnaire specification,

which leads to multiple views of the questionnaire that should be consistent through

all platforms and systems. Multiple implementations come with all the issues

related to multiplatform development.

Figure 2 - IT support for the survey process

The data collection management system provides all the information and

functionality to survey operation management. It is responsible for aspects such as

data quality, survey coverage and fraud detection. It might include codification and

imputation functionalities. Here, the main challenge is system customization since

each survey will have its own monitoring demands, which derivate from the

sampling frame, questionnaire specification and data collection strategy.

Finally, there are the systems related to collected data analysis and

publication. Tabulation systems define tabular aggregated views for the survey

data, while microdata provides access to the collected data considering security and

anonymization parameters. The publication system aggregates information from

microdata and tabulation to create a cohesive portray of survey results that can be

shared with stakeholders.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

25

In summary, from the architecture defined above, four challenges arise when

analyzing the survey process IT infrastructure point of view. First, metadata

scattering has a significant impact and generates unwanted redundancy, rework and

inconsistencies. Second, systems integration and multiplatform demands can

increase the IT infrastructure complexity. Third, legacy systems have a significant

impact on survey metadata and data usage. Forth, since each survey is unique, there

is demand for systems customization. At the center of these problems, lies survey

metadata. The survey metadata is the invariant among all the systems and its central

component is questionnaire definition. Thus, to further understand the challenges

of a survey, one must understand the challenges of designing and using a

questionnaire.

2.2.3.What is a questionnaire?

The survey definition presented in Section 2.1 highlights three survey aspects:

the need of a systematic strategy for gathering information, the usage of

quantitative descriptors to enable understanding this information and the fact that

the information is related to the entities under study. In questionnaire-based

surveys, the questionnaire is the protagonist. It is the questionnaire that encodes

quantitative descriptors into questions about the entity attributes in which the survey

is interested in. It is the questionnaire that makes data collection systematic, in the

sense that each questionnaire answered will, ideally, provide a picture of a specific

subject member of the population under study. It is the questionnaire that

materializes the knowledge that the research aims at gathering, consolidates the

research point of view for its themes as well as sampling and collected data

organization (tabulations). This brief discussion brings to the forefront, the

importance of questionnaires to surveys and the need for a clear definition of what

is a questionnaire and a question.

The English Oxford Dictionary defines a questionnaire as “a set of printed or

written questions with a choice of answers, devised for the purposes of a survey or

statistical study” (QUESTIONNAIRE). Further on, a question is defined as “a

sentence worded or expressed as to elicit information” (QUESTION). From these

definitions, one may infer that a questionnaire is an artifact about collecting data

that makes it possible to answer questions proposed by a survey. In the context of

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

26

a survey, the questionnaire is the measurement instrument (GROVES, FOWLER

JR., et al., 2009) and part of a larger process that aims at solving a research problem

using a clearly defined methodology.

Figure 3 presents an overall picture of how questionnaires work in the context

of a survey. As the survey is executed, questionnaire answers, through inference

and statistical computing, are transformed in characteristics of a population.

Inference is carried out in the context of a formal system that permits the description

of an unobserved phenomena based on observed phenomena. The two inferential

steps described in Figure 3 are a cornerstone of what a survey is, since in those steps

errors arise and have to be mapped and controlled for the survey to be valid. Errors

in the first step are related to the answers that people give which should accurately

describe characteristics of respondents. Errors in the second step are related to the

subset of persons participating in the survey which must have characteristics similar

to those of a larger population (GROVES, FOWLER JR., et al., 2009). This

scenario makes it clear how important it is to have a well-designed questionnaire

and controlled data collection, since errors in the that stage are propagated all the

way up to the population characteristics with great impact on research results.

Figure 3 - Survey inference

Designing the questionnaire and questions is not simple. Nonetheless, a

well-designed questionnaire is key to survey data quality. Questionnaire design

starts with finding concepts that express the specified measurements. Once the

concepts are defined, they must be transformed into questions. Each question aims

at gathering one specific piece of data that measures the initial concept. A question

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

27

can group measurements by having one question item3 associated with each

parameter to be measured and is composed by a combination of the following:

introduction, motivation, information regarding the content, information regarding

definitions, instructions for the respondent, instructions for the interviewer,

question items and answer choices. The process of creating questions involves five

decision: 1) How to formulate a question; 2) How to organize response alternatives;

3) What will be the structure of open ended and closed questions; 4) What will be

the structure of grouped (batteries) survey items; 5) What will be the order, layout

and data collection method (SARIS and GALHOFER, 2014).

It is also important to have a minimum understanding of the cognitive process

in answering questions and the problems in the response process that will impact

survey data collection and reports. Among those problems are: failure to encode the

data that the questionnaire aim at gathering into questions; misinterpretation of

questions; forgetting and other memory problems while a subject provides an

answer; flawed judgment or estimation strategies; problems in formatting answers;

deliberate misreporting; failure to follow questionnaire instructions and proposed

navigation (GROVES, FOWLER JR., et al., 2009). Some of the problems pointed

previously are related to the expertise in designing questions, others to the cognitive

process of understanding and answering questions, and some to the

operationalization of the questionnaire.

From an IT point of view, the questionnaire has a role in each of the survey

process phases: first, it needs to be created during the survey planning and design

phase. During the questionnaire creation, metadata, data and paradata are defined.

Once the questionnaire has been created, the issue becomes how to use that

questionnaire to support and control interviews during data collection phase.

Considering a reality where software is mandatory, supporting the interview means

transforming the defined questionnaire in a data collection application that

conforms to questionnaire specification. Finally, once data are collected, the

questionnaire is a reference that gives meaning to the collected data, helping to

understand and produce the answers to the questions raised for the survey.

3 Saris et al. (2014) use the term survey item to express what can be generally understood as

a question. A question can have one or more requests for answers. In this work, requests for answer

are called question items and are always linked to a measurement. Hence, at the end of a

questionnaire-based interview, each question item will have a value associated that corresponds to

the measurement.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

28

Table 1 presents a list with survey software requirements related to

questionnaires and points to the complexity in creating IT solutions to support

surveys questionnaires.

Survey
Questionnaire

Software
Development

Challenges

Planning and design
phase

1. Specify survey attributes

2. Specify survey constants

3. Specify survey tabulation

4. Specify sampling and coverage parameters

5. Specify themes, questions and answers
considering the diversity of questioning and
answering strategies

6. Specify measurements format

7. Specify conditional question and answer
options visualization

8. Specify data imputation according to
answer and survey metadata-based rules

9. Specify conditional questionnaire
navigation (questions might be skipped
depending on previous answers)

10. Specify conditional visualization of
question and answer options

11. Specify complex data validation

12. Specify triggers for data adjustments as
questions are answered

13. Specify interview instructions

14. Specify creation of data derived from
measurements

15. Specify survey object of interest creation

Data collection phase

16. Support multiplatform data collection
strategies

17. Support integration with third party
software (sampling, object identification,
data input software)

18. Support question and answers
customization according to context

19. Specify paradata

20. Support themes, questions and answers
presentation customization

Data analysis and
publishing phase

21. Specify data imputation

22. Specify coding of open text
measurements

Table 1 - Questionnaire survey software requirements

An example of the requirement described in item 1 is the usage of an indicator

to determine when to include a specific set of questions that measures aspects of

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

29

native population in a demographic census questionnaire. This attribute is closely

related to the geographic information about the area where the interviewee lives, its

value must be determined before the interview starts and be properly coded into

questionnaire navigation logic to allow those questions to be asked only when

necessary, helping to maintain data quality. Another example is dynamic objects of

interest creation in demographic surveys (requirement item 15), such as the list of

people that inhabit a household. During the interview, the person answering the

questionnaire, makes a list of household inhabitants. This list is then used when

questions related to education and health, for example, must be answered regarding

each of the inhabitants. Those are just two examples of the challenges involved in

specifying survey questionnaires.

Questionnaire complexity has a direct impact on survey IT solutions and the

level of flexibility those solutions allow when creating and executing a survey. This

dissertation aims at investigating the impacts that adopting a model-driven

approach can have on survey support systems development and, more specifically,

questionnaire specification and data collection systems development. An important

step towards that is to understand how well solutions available on the market for

questionnaire specification and data collection support those requirements. In the

next section, those solutions are analyzed.

2.3. Software solutions for survey questionnaires

A simple search on the Web is enough to see that there are countless options

when selecting software for survey data collection. On the other hand, when looking

for an analysis of this class of software, the scenario is similar to what can be found

in the survey methodology research field. There is little work done on comparing

tools, listing requirements or establishing patterns for data collection and

questionnaire design. As a result, it is clear the lack of a holistic view of survey

software support.

Research work in this area is segmented with its main fields being statistical

metadata systems and survey data processing, analysis and visualization.

Technology evolution brought a lot of attention to data processing, analysis and

visualization. This research topics, have been and still are largely researched with

conferences dedicated to each of those topics.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

30

On survey metadata there is some research work closely related to

questionnaire design, but not quite the same (KARGE, 1998; VARDAKI e

PAPAGEORGIOU, 2004). As already discussed in sections 2.2.2 and 2.2.3,

metadata is closely related to data collection and is completed during the survey

planning phase. Next comes data collection which is usually seen as a well-defined

activity that is executed in the early stages of statistical surveys with benefits that

do not flow into other parts of the survey process (KIM, GRUNDY and HOSKING,

2015). That interpretation on the relevance of data collection and interview software

is a mistake given the importance of data collection and its impact on the survey

quality. In that context and considering the list of requirements on Table 1, where

does currently available survey questionnaire design and data collection software

stand? Is it relevant to try a new approach or what the industry and academy now

provide is enough?

Questionnaire design and data collection tools can be divided in two groups:

Web based tools and frameworks. Web based tools work by allowing the user to

create a questionnaire that will be distributed and answered through the Web.

SurveyMonkey (SURVEYMONKEY, 2019), Zoho (ZOHO, 2019) and Qualtrics

(QUALTRICS, 2019) are examples of Web based survey tools. CSPro (UNITED

STATED CENSUS BUREAU, 2019), developed by the US Census Bureau, Blaise

(STATISTICS NETHERLANDS, 2019), developed by Netherlands Statistics and

Open Data Kit (OPEN DATA KIT, 2019) are examples of frameworks and, usually,

include at least the questionnaire design tool and the data collection tool.

Although current solutions for questionnaire design and data collection have

evolved, most of them do not support the level of complexity that questionnaires

from large scales statistical operations require. Also, none provide a mechanism of

integration with the other systems in the survey process which, as explained in

Section 2.2.2, has a great impact on the survey software infrastructure.

Multiplatform data collection is also an issue. Finally, all the aforementioned

solutions present a tight coupling between questionnaire design and questionnaire

presentation during that collection.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

31

2.4. Model-driven Software Engineering

Model Driven Engineering (MDE) has been used by multiple engineering

areas. When applied to the software development field, it receives the name of

Model Driven Software Engineering (MDSE)4. Modeling has been part of the

software development world since the early days of programming. It is a natural

movement that software engineering practitioners started looking at modeling as an

answer to the pressure for continuous reduction of cost and time to market, while

improving software quality (BEZIVIN, 2004).

The central ideal in MDSE is to use models as first-class citizens and to

transform software development in the process of creating and transforming

models. As such, models constitute the main artifacts to be developed in a MDSE

approach. Models assume a role that goes beyond documentation, reaching

purposes such as code generation and application configuration. These new uses of

models demand high-quality modeling languages capable of producing formal

models that can be processed by tools (i.e., generator, interpreters, compilers, etc)

(KAHLAOUI, ABRAN and LEFEBVRE, 2008).

Developers generally perceive MDSE as improving productivity, problem

solving, creativity and enjoyment. But there are still barriers for its adoption such

as lack of tooling to support MDSE activities and high training costs

(HUTCHINSON, WHITTLE and ROUNCEFIELD, 2014).

Research regarding the benefits of MDSE adoption in large scale are limited,

which makes it harder to have a clear picture of MDSE status as a software

development technology. With the aim at filling this gap, a 2014 research analyzed

adoption of MDSE techniques in an industrial context. The survey pointed out that

the most common use of models is for problem understanding and documentation.

Next comes model based code generation with testing, executable models, models

for simulation and model transformations being less common. UML is the most

used modelling language followed by DSLs. The study also detected that the

coexistence of more than one modeling language is common. Overall, the main

4 Nomenclature can be a challenge when discussing Model Driven Engineering in Computer

Science. Some researchers use the more general term MDE, others model-driven software

engineering (MDSE), others model-driven software (MDD) or model-driven software development

(MDSD). In this work the option was made to use MDSE to indicate the usage of a model-driven

approach when applied to software engineering in general and not just to the development phase.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

32

motivation for model-driven engineering adoption is better communication

between stakeholders, consistency among development artifacts, higher

productivity, coding quality improvements and decreased time to market

(WEGELER, GUTZEIT, et al., 2013; MOHAGHEGHI, GILANI, et al., 2013).

Although there is plenty of MDSE use cases, a lack of clarity on whether

model-driven software engineering (MDSE) is a good way to develop software

remains. Some companies have reported great success with it, whereas others have

failed. A 2014 study on MDSE best practices points to some success factors. First,

in general, companies who successfully applied MDSE in large scale did so by

creating or using languages specifically developed for their domain, rather than

using general-purpose modeling languages such as UML. A second factor is that

MDSE tends to be most successful when driven from the ground up. MDSE efforts

imposed by high level management typically struggle or fail if managers do not

have the buy-in of developers first. Third, rather than following heavyweight top-

down methodologies, successful MDSE practitioners use MDSE as and when it’s

appropriate and combine it with other methods in a very flexible way. Fourth,

although important, code generation is not the key driver for adopting MDSE. Code

generation is perceived as bringing benefits such as productivity but reports on

productivity gains vary and are usually counter-balanced by costs with training and

deployment of DSL-based software. In fact, the main perceived benefit from MDSE

is that it makes it easier to define explicit architectures, especially when MDSE is

a ground-up effort. The rigor that precise modeling imposes on developers actually

forces them to develop explicit architecture descriptions, but in a way that does not

impose a heavyweight and lengthy architecture definition process. (WHITTLE,

HUTCHINGSON and ROUCEFIELD, 2014)

By 2019, MDSE is still in the process of consolidating its theories and

methods. Although there is a lot of interest and many use cases, there is also a lot

of space for modeling techniques and tools to improve their support of MDE-based

software development. There is little consensus on modeling languages or tools and

the effort made on standard general-purpose modeling languages, such as UML,

has little impact on the industry. As a matter of fact, software designers either do

not use UML, or use it only selectively and informally (WHITTLE,

HUTCHINGSON and ROUCEFIELD, 2014). Still, the benefits are quite enticing

when the initial barrier of adequate methods and tools has been transposed.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

33

2.4.1.MDSE concepts

MDSE embraces different approaches for the creation of software systems

starting from models. These approaches share common definitions and concepts

that are central to the practice of MDSE. Among those concepts are systems,

models, meta models, model transformations and modeling languages.

Modeling only makes sense when there is something to be modeled. It Does

not really matter if this something is abstract of real. In the context of MDSE the

object of modeling is a system, which can be defined as a generic concept for

designating a software application, software platform or any other software artifact.

Systems can also be “composed of” and be “related to” other systems (SILVA,

2015). The definition of what is a system is closely related to the definition of

model.

A model is a set of statements about some system under study (SEIDEWITZ,

2003). As such, models are a simplification of a system built with an intended goal

in mind. A system’s model should be able to answer questions in place of the actual

system (BÈZIVIN and GERBÉ, 2001). As a matter of fact, the model is a reduced

rendering of the system that it represents and by removing or hiding details that are

irrelevant for a given viewpoint, it lets us understand the system’s essence more

easily (SELIC, 2003). A good model allows predictions or inferences to be made

using the created system abstraction, be it a real or language-based system

(KÜHNE, 2006). To be useful, models must be a representation of a real system;

communicate well; appeal to intuition regarding the system under study; be a

trustworthy representation of the modeled system; allow to reason about the system

enabling predictions about its behavior and its properties and be significantly

cheaper to construct and analyze then the system under study (SEIDEWITZ, 2003).

The prefix meta is used whenever an operation is applied twice. For example,

a discussion about discussions is a meta-discussion. As such, the expression meta

model implies that modeling took place twice (KÜHNE, 2006). If you consider that

in fact models are themselves systems (SILVA, 2015), creating a model can be seen

as creating a system. As such, a meta model is the specification model for a class

of systems where each system in the class is itself a valid model expressed in a

certain modeling language (SEIDEWITZ, 2003). As a matter of fact, a meta model

can be defined as the “model of a language of models” or as “models of modeling

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

34

languages” (FAVRÈ and NGUYEN, 2005). Meta models are models that define the

structure of modeling languages (SILVA, 2015).

As mentioned in the previous section, a modeling language is defined by a

meta model. In MDSE, a modeling language is the set of all possible models that

are conformant with the modeling language abstract syntax, represented by one or

more concrete syntaxes and that satisfy a given semantics. The pragmatics of a

modeling language helps and guides how to use it in the most appropriate way

(SILVA, 2015).

Figure 4 shows the relationship between system, model, meta model and

modeling languages. First, the relationship “ElementOf” between model and

modeling language means that a modeling language is a set of models. Second, the

relationship “Defines” between meta model and modeling language means that a

meta model is a model of a modeling language structure and that the modeling

language is defined by the related meta model. From the previous two remarks, a

meta model is a model of a set of models (a model of models). Finally, the

“ConformsWith” relation between model and meta model means that the model

should satisfy the rules defined at the level of its meta model (SILVA, 2015).

Figure 4 - System, model, meta model and modeling language relationships

For a full comprehension of what is the MDSE proposal, one final concept

needs to be defined: model transformations. A model transformation, in model-

driven engineering, is an automated way of modifying and creating models which

can aid in ensuring that a family of models is consistent according to standards

which will be defined by the software engineer. The aim of using a model

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

35

transformation is to save effort and reduce errors by automating the building and

modification of models where possible (WIKIPEDIA, 2019).

Model transformations are also a way to bridge the semantic gap and move

from a computer independent model (CIM), to a platform independent model

(PIM). Next, from a PIM it is possible to use model transformation to move to a

platform specific model (PSM), and finally, to source code as depicted in Figure 5.

Transformations are the means to achieve code generation and offer a general

solution for MDSE. Still it is important to keep in mind that, although code

generation is a well-advertised benefit, research shows that it is not the main reason

for MDSE adoption (WHITTLE, HUTCHINGSON and ROUCEFIELD, 2014).

Figure 5 - Model transformations in traditional MDSE

When considering the relationship between model transformations and

modeling languages it becomes evident that performing a model transformation

requires a clear understanding of the abstract syntax and semantics of both the

source and target modeling languages. One way to enable the creation of model

transformations is through the usage of a transformation language to describe

transformations with constructs for explicitly expressing, composing, and applying

transformations (SENDAL and KOZACSYNSKI, 2003).

The two most common types of model transformations are Model to Text

(M2T) and Model to Model (M2M) transformations. M2T is focused on generating

software artifacts such as source code and other kinds of text files and the most

common technique used is code generation. M2M allow translating models into

another set of models, typically closer to the solution domain or that satisfy specific

needs for different stakeholders. M2M approaches can be implemented with general

purpose programming languages or using specialized model transformation

languages such as QVT, among others.

Models, meta models, modeling languages and model transformations are

traditionally explained using a meta-modeling layered architecture view of software

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

36

development. This architecture is composed of four levels. M0 is the concrete level

representing the real world with situations that are unique in space and time

represented by a given model. M1 is the model level. In M1 level are all models

that represent real situations and that have a corresponding M2 meta model. M2

level is the meta-model level and contains any kind of meta-model. Finally, at the

M3 level, one finds the meta-meta-model which is self-contained (a meta-meta-

model is defined using its own primitives). Figure 6 shows this structure with the

representedBy relationship between real systems and models and the conformantTo

relationship characterizing the association between modeling layers and reinforcing

the role of models.

Figure 6 - MDE traditional layers

It is this layered architecture that sets the basis for MDSE approaches such as

Model Driven Architecture (MDA), Microsoft Software Factories and Model

Integrated Computing (BÈZIVIN, 2005). All of those solutions have in common

the fact that they are general purpose model-driven software engineering solutions

with different grades of tool support. For instance, MDA does not advocate specific

tooling and it is an OMG standard. Although those solutions have been used and

applied in the industry, their success can be seen as relative since after more than a

decade, none of them have become mainstream. Research indicates that frequently

success is achieved through the usage of domain-specific languages (DSLs) or

domain-specific modeling languages (DSMLs) instead of using standards and

general purpose modeling languages, such as UML, as meta-modeling tools

(WHITTLE, HUTCHINGSON and ROUCEFIELD, 2014). As a matter of fact,

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

37

there are different approaches to MDSE and choosing which approach to use for a

project can be determinant for its success.

2.4.2.MDSE approaches

Once MDSE concepts are understood and a decision is made to use it in

software development, a new challenge arises. How is it done? What are the

methodologies, techniques, tools? How to practice MDSE? There are a couple

strategies available and quite a few tools. In fact, MDSE comes in many flavors and

it is hard to make sense of all the options and technologies involved. One possibility

of classification is to organize concepts, methodologies and tools in a three-level

hierarchy as presented in Figure 7.

High-level approaches include the generic concepts of MDSE usually as part

of standards and methodologies. At this level, there are no tools or implementation

strategies. Examples are Model-driven Architecture (MDA) and Model-based

Testing (MBT). Both are standards that specify concepts and structures to create

Model-driven Architectures and Model-driven Testing strategies.

Figure 7 - MDE approaches - adapted from Silva (2015)

At the middle-level, there are tools for solving meta-model issues. Here the

focus is on tools that allow users to specify meta models. Some examples are

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

38

language workbenches, the Eclipse Modeling Framework (EMF) and Microsoft

Software Factories (MSF)5.

Finally, in the concrete-level there are models created using meta models

defined within the middle-layer. That is the case of DSL code created using

language workbenches, XIS-Mobile (a MDD implementation that aims at

increasing the productivity cross-platform mobile applications development),

Microsoft Web Service Software Factory and PBGT (MBT implementation that

provides generic test strategies based on user interface test patterns, with multiple

configurations for testing different implementations of UI Patterns) (SILVA, 2015).

A second classification of MDSE approaches considers the impact they may

have on the decision to move towards a MDSE: standard-based approaches and

domain-specific approaches. While standard-based approaches leverage existing

language standards (MDA/UML), tooling, and even development processes,

domain-specific approaches require domain-specific languages (DSLs) and tool

support to be created prior to the actual software development. The design,

implementation, and testing of DSLs and their tool support require a wide spectrum

of methods and techniques which bring additional complexity and challenges to the

process (CZECH, MOSER and PICHLER, 2018). Standard-based approaches also

tend to reinforce general modeling languages, such as UML. In comparison with

domain-specific languages, that means losing freedom in expressing domain

specificity. As a matter of fact, although well-known and disseminated in the

industry, UML is far from being universally accepted as a MDSE approach and

DSLs for narrow, well-understood domains are common. Companies who

successfully applied MDE largely did so by creating or using languages specially

developed for their domains, rather than using a GPML such as UML

(HUTCHINSON, WHITTLE and ROUNCEFIELD, 2014).

Still, it is important to notice that is possible to apply standard-based MDSE

to a specific domain. MDA/UML provides a profile mechanism that allows

customizing UML while reusing its metamodel as a base language. By extending

UML elements with stereotypes and their attributes, it is possible to define new

concepts to better represent elements of a domain (NASCIMENTO, VIANA, et al.,

5 EMF and MSF can be used to support DSL creation. In the example, they are listed in the

standard-based MDSE because the concrete level solutions follow MDA e MBT.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

39

2012). This approach can be very interesting when the DSL to be developed is not

text based.

2.4.3.MDSE and survey questionnaires

MDSE is not a consensus. While some see it as a successful methodology for

software development which is adopted by multiple industry areas, others claim

that it failed so far, and it has limited usage. Systems generated automatically from

models are rare and MDSE is far from becoming a usual method for developing

systems (MUSSBACHER, AMYOT, et al., 2014). Given this scenario, why think

of MDSE when looking for improvements in survey questionnaire related software?

First, MDSE can be a domain-oriented technology. Surveys and survey

questionnaires are a well-defined domain. As such they could benefit from known

MDSE gains including higher productivity (by increased automation in the

development process), increased standardization and formalism and improved

communication within development teams and with external stakeholders. Besides,

labor-intensive and error-prone development tasks are automated and best-known

solutions can be integrated in code generators, resulting in defects reduction and

software quality improvement (MOHAGHEGHI and DEHLEN, 2008). Second,

MDSE allows domain experts, who specify requirements, to be directly involved in

the development process because they understand the model and can work together

with developers to generate code from it (BURDEN, HELDAL and WHITTLE,

2014).

To use an MDSE approach for survey questionnaires and data collection

software is not a completely new idea. Kim et al. (2015) developed the Survey

Design Language (SDL) and its supporting tool, SDLTool. SDL consists of a

domain-specific visual language set. Each language is designed to model a specific

aspect of statistical surveys providing high-level and low-level modeling facilities

capable of matching experts cognitive models for statistical surveys. The SDLTool

was the environment that tied together the different DSLs aspects through survey

resources visual modeling, association between resources and statistical survey

design elements, running modeled surveys on target population datasets, and

providing visualization of the survey process. The initiative was successful but

ended up discontinued since its focus was data processing, analysis and

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

40

visualization. As a matter of fact, interviewing and data collection software was

perceived by the research authors as an aid with focus on the early stages of the

survey process whose benefits do not flow into the survey process (KIM, GRUNDY

and HOSKING, 2015). Survey methodology research shows that this perception of

data collection insolated form the survey process is mistaken. Data collection, if

properly modeled and implemented, can foster data quality and make statistical data

production processes more efficient and effective. Since it is, indeed, part of early

stages in survey methodology, it makes sense to deal with questionnaire

specification and data collection first.

As seen in section 2.2.3, questionnaires can be highly complex. Still,

complexity is inherent to many problems that are well solved with traditional

software engineering approaches. Why then, is the adoption of MDSE for

questionnaire-based surveys a good idea? First, questionnaire specification changes

continuously as domain experts test and evaluate its usage. It is necessary to

communicate this continuous stream of changes between software developers and

domain experts. Second, integration is mandatory since data collection is only a

fraction of the whole survey process. Third, having a single model for a survey

questionnaire might ease the development burden when operating multi-modal data

collection. Fourth, it is hard to deal with legacy collected data. Having a survey

questionnaire model might provide domain experts and software developers with

better tools to tame legacy data consumption issues.

One could argue that traditional software engineering practices are enough to

deal with all those issues. Still, from our experience developing data collection

software for censuses and large scale social, economic and demographic surveys in

Brazil, that is not the case. A lot of work and time is invested in communicating

with domain experts from each survey area, aligning data integration with database

administrators or defining data model specifications for tabulation, imputation,

microdata and data publishing systems. Documenting and tracking questionnaire

requirements are a burden that takes valuable time from developers, even after data

collection architecture evolved enough to allow developers to quick fix metadata

directly. In fact, communication between developers and software stakeholders is a

known key bottleneck in software development. A good model can describe a

system behavior’s critical parts in ways a domain expert can understand and a

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

41

centralized specification can ease the communication burden (STREMBECK and

ZDUN, 2009).

As mentioned, data integration is a problem as collected data needs to flow

allowing the survey process to progress. Each time a domain expert changes a

measurement specification, that change generates impact on database schemas that

prompts database administrators to apply changes and fix inconsistent data. The

ability to improve and integrate systems is always constrained by how long

programmers take to figure out what the code is intended to do and how it does it.

Raising the level of abstraction through the usage of models help by making it easier

to understand what a questionnaire represents.

Multi-mode (which usually means multiplatform) data collection can benefit

from the architectural consistency, which is a well know benefit from using MDSE

approaches (HUTCHINSON, WHITTLE and ROUNCEFIELD, 2014).

Finally, having a common ground, a.k.a. questionnaire model, might help to

tame legacy data. Although it is impossible to fully reconstruct questionnaires using

only collected data, a lot of information can be retrieved from database schemas

that might be useful to partially reconstruct old questionnaires. In software

development a DSL can facilitate establishing similarities between new and past

specifications enabling the reuse (ARANGO, 1994).

Those seem to be enough arguments to at least further investigate MDSE as

an approach for the development of survey related software. Once the decision to

investigate the usage of MDSE strategies in the development of questionnaire-

based survey data collection software is made, the next question is what would be

the best MDSE approach?

When trying to answer that question, it is important to remember that

questionnaires are essentially specified with text. As will be seen in Chapter 3,

questionnaire documentation is manly a bunch of pdfs, spreadsheets and text files.

Besides, complex questionnaires present the challenge of non-linear information

flows. It is known that visual representations are especially appropriate where non-

linear information flows need to be expressed, be it interactions, relations or state

changes. In these areas, domain-specific concrete syntax plays a key role and allow

for easy recognition of important abstractions (WEGELER, GUTZEIT, et al.,

2013). That points us in the direction of text-based questionnaire modeling. In fact,

it can be argued that textual format is more generally useful, scales better and the

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

42

necessary tools for a textual DSL take less effort to build. In the vast majority of

cases, starting with textual languages is a good idea – graphical visualizations or

editors can be built on top of the meta model later, when and if a real need is

established. (VOELTER, BENZ, et al., 2013).

A second point in defining a MDSE approach is that high-level standards and

solutions play a role on guiding MDSE practice, but do not produce direct practical

results which is the focus this discussion. As such, technology choices are focused

on options located in the middle and concrete levels presented in Figure 7.

Third, time is a constraint in every software project. When choosing a MDSE

approach productivity and level of tool support should be considered.

Fourth, it is important to delineate how much code generation will be used.

Model transformation are a huge component of MDSE. But that does not mean that

the only way of benefiting from it is by full-fledged generated systems. As

mentioned, fully generated systems are not common and code generation, although

important, it is not the first reason for adopting MDSE.

Figure 8 - Model-drive questionnaires architecture

Finally, it is important to establish properly what is the general purpose of the

modeling tool. It is common sense that if one does not know what the task at hand

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

43

is, it cannot pick the best tools. Given the broad range of possibilities brought by

MDSE, the choice was made to focus on the communication challenges of the

questionnaire data collection software. As such DSL is mainly focused on allowing

questionnaire specification and using transformations to generate partial code

(domain model implementation), data collection software compatible questionnaire

metadata, data collection software questionnaire configuration and data models for

relational storages.

Figure 8 presents a simplified view of this model-driven questionnaire

architecture.

Based on the established criteria, the choice made was to move forward with

a textual DSL. Standard-based approaches with general modeling languages such

as UML seem too far from questionnaire designer’s communication universe,

which use only text to specify and communicate questionnaire specifications. Next

it is necessary to understand a little bit more about what DSLs are, how they are

created, how they are used and what tools are available.

2.5. Model-driven DSL approach for survey questionnaires

There are many definitions for DSLs, but all of them are similar. Mernik et al

(2005) define DSLs as languages tailored to a specific application domain that offer

substantial gains in expressiveness and ease of use compared with general-purpose

programming languages in their domain of application. Deursen et al (2000) as a

programming language or executable specification language that offers, through

appropriate notations and abstractions, expressive power focused on, and usually

restricted to, a problem domain. Voelter et al (2013) define DSL as a language that

is optimized for a given class of problems, called a domain. It is based on

abstractions that are closely aligned with the domain for which the language is built.

There are many others. In common all this DSL definitions have the fact that

language universe is restricted to a specific domain. It is important to point that the

first two definitions are focused on the fact that a DSL must have some level of

executability which is not accurate, since there can be non-executable DSLs.

DSLs are, in general, the result of language-oriented approaches and their

research field is closer to the area of programming languages. As stated in the DSL

definitions, in contrast to GPLs (General Purpose Languages), DSLs are expressive

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

44

uniquely over the specific features of programs in a given problem domain, are

often small, more declarative than imperative, usually textual and almost as old as

GPLs. The first published papers to coin the concept of a DSL is from 1966,

presenting a family of unimplemented computing languages intended to tackle

differences of a given application area by a unified framework (LANDIN, 1966).

 Some synonyms of DSLs are application domain languages, little or micro

languages, task-specific languages, architecture description language (ADL) or

specific languages. They are also closely related to scripting languages (CZECH,

MOSER and PICHLER, 2018; THIBAULT, MARLET and CONSEL, 1999;

NASCIMENTO, VIANA, et al., 2012).

2.5.1.DSLs versus DSMLs

When starting an investigation on the field of DSLs, soon the term domain-

specific modeling languages (DSMLs) will pop up. But what is a DSML? What are

the differences between DSLs and DSMLS? Do they provide distinct benefits? The

question about what should be used, a DSL or a DSML, is a direct consequence of

knowing about the existence of DSMLs.

Over the last few decades, DSLs have proven efficient for mastering the

complexities of software development projects. The natural adaptation of DSLs to

the model-driven technologies has in turn established domain-specific modeling

languages (DSMLs) as vital tools for enhancing design productivity

(NASCIMENTO, VIANA, et al., 2012). As such, DSML seem to be in fact DSLs

applied in a domain-specific modeling (DSM) context (WEGELER, GUTZEIT, et

al., 2013).

DSM is an informal standard that prescribes an architecture and tools that aim

at raising the level of abstraction beyond programming by specifying the solution

in a language that directly uses concepts and rules form a specific problem domain.

Its final goal is to generate final products in a chosen programming language or

other form (KELLY and TOLVANEN, 2008).

Research shows that, with some tailoring, the same processes used to define

DSLs can be used to define DSMLs, sharing the same key artifacts that are observed

when an external modeling DSL is build. (STREMBECK and ZDUN, 2009).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

45

One final remark on this subject is important. DSLs are originally a topic in

the computer languages research area. As such is uncommon to see DSLs associated

with term model transformations. Actually, it is also uncommon to see the term

model associated to DSL code and correspondence between model and program is

recent (VOELTER, BENZ, et al., 2013). Hence, if models are equivalent to

programs in the universe of DSLs, transformations are equivalent to code

generation.

Given the above scenario, it seems irrelevant from the perspective proposed

in this research to make no distinction among DSL and DSML conceptually. Also,

in the bibliographic review, references using both terms were researched and are

part of the theoretical basis that support the choices made.

2.5.2.DSL benefits and risks

With a clear understanding of what is a DSL, the next step is to make

decisions about how to work with DSLs. To balance those decisions, it is important

to be clear about the benefits and risks associated with DSL usage. Some of them

are aligned with MDSE promises, others are related to the use of DSLs themselves.

The characteristics of DSLs guarantee architectures that achieve faster

development of safer applications since DSLs are known to improve code quality.

A DSL can also be used to parameterize a generic application. In fact, designing a

DSL involves the same commonality analysis that is used in the study of a program

family, i.e., determining assumptions that are true for all members of the family and

variations among members. This process should be performed by both domain

experts and software engineers (THIBAULT, MARLET and CONSEL, 1999).

Designers must also keep in mind that DSLs can be used on different abstraction

layers, ranging from technical tasks to business-level tasks. As such, DSLs should

be designed to be as simple as possible while making it as powerful as needed

(STREMBECK and ZDUN, 2009).

Table 2 presents the main benefits and risks associated with the decision to

use a DSL as a strategy for MDSE. These benefits are closely aligned with the

reasons for looking into a MDSE approach for modeling questionnaires presented

in Section 2.4.3. In a broader view, the adoption of a DSL for questionnaire

modeling can have its benefits reaching even further into the main challenges of

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

46

survey IT infrastructure. The usage of DSL for modeling questionnaires can

standardize and centralize questionnaire metadata definition preventing metadata

scattering and model transformations can be used to ease the systems integration

burden. It can also bring benefits by making it easy to customize data collection

software for specific survey demands. Finally, questionnaire modeling using DSL

can provide a canvas for dealing with legacy data and metadata reuse.

When traditional solutions to deal with software complexity show their

limitations, looking for new approaches to improve software development becomes

necessary. New approaches present risks that have to be accessed and considered

when adopting a new technology. From the risks listed in Table 2, the main concern

when creating a DSL for questionnaire modeling are the risks associated with costs.

Considering the development of data collection software for surveys with complex

questionnaires, allow the survey designer control over data collection application

behavior has the potential to eliminate a source of miscommunication and speedup

time to market for new surveys. It can be argued that you don’t need a DSL to

achieve that. But any other solution will have limited potential and only mimic the

behavior of DSL without the tooling infrastructure to support it. For example, many

of the Web-based tools for data collection have forms for the user to configure the

questionnaire. Still, none of them can handle all requirements listed on Table 1,

which makes those solutions unsuitable for large scale surveys.

DSL Benefits DSL risks

Solutions can be expressed in the idiom and at
the level of abstraction of the problem
domain. Consequently, domain experts
themselves can understand, validate, modify,
and often even develop DSL programs.

There are costs associated to designing,
implementing and maintaining a DSL.

Programs are concise, self-documenting to a
large extent, and can be reused for different
purposes.

There are costs for the education for DSL
users.

Enhanced productivity, reliability,
maintainability, portability and reusability.

There is a limited availability of DSLs.

Domain knowledge is embodied enabling the
conservation and reuse of this knowledge

It is hard to find the proper scope for a DSL.

Allow validation and optimization at the
domain level.

It is hard to find the right balance between
domain-specificity and general-purpose
programming language constructs.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

47

Improve testability following approaches such
as MBT.

There is potential loss of efficiency when
compared with hand-coded software.

Table 2 - DSLs main associated benefits and risks (DEURSEN, KLINT and VISSER, 2000;

CZECH, MOSER and PICHLER, 2018; SPINELLIS, 2001; BROOKS JR, 1996)

One additional consideration on mitigating risks is that costs can be limited

by limiting scope. It is always possible to start with a prototype and then move

forward in case results are satisfactory.

Benefits balance out the risks when deciding to move forward with creating

a DSL for questionnaire modeling. Has it already been tried? The next session

discusses the use of DSLs on questionnaire modeling domain.

2.5.3.Existing DSLs for survey questionnaire modeling

DSL techniques has been applied to many domains raging from

bioinformatics through robotics. In a more expressive way, web, embedded

systems, low level software, control systems, parallel computing, simulation, data

intensive apps, real-time systems, security, education and networks

(NASCIMENTO, VIANA, et al., 2012). DSLs are also not new for questionnaires,

which have been the 2013 language workbench challenge (LWC) assignment. The

assignment consisted of developing a DSL for questionnaires, which had to be

rendered in an interactive GUI that reacted to user input, and stored answers for

each question. The questionnaire definition was expected to be validated, detecting

errors such as unresolved names and type errors. In addition to basic editor support,

participants were expected to modularly develop a styling DSL that could be used

to configure the rendering of a questionnaire. The languages created replicated

basic questionnaires functionality but lacked primordial features such as the

possibility to specify questionnaire navigation, complex validation rules and

triggers among others (ERDWEG, STORM, et al., 2015). Apart from the 2013

LWC assignment and its solutions no DSL was found for questionnaire modeling.

Some decisions patterns that point towards the usage of DSLs are closely

related to questionnaire modeling. The first is DSLs being chosen due to their

potential to facilitate data structure representations and transversal. The second is

DSL usage to facilitate system front-end configuration and make interactions

programmable (MERNIK, HEERING and SLOANE, 2005; SPINELLIS, 2001).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

48

With the concept of DSL clearly defined, its benefits and risks understood

and having found no off-the-shelf DSL for questionnaire modeling, the next step is

to create one. Section 2.5.4 describes DSL development process, premises and

choices that were made before starting DSL development setting the basis for the

development of a questionnaire modeling language prototype.

2.5.4.DSL development process and tools

DSL development involves five phases: decision, analysis, design,

implementation and deployment. At first, those steps might seem sequential, but as

a matter of fact, DSL development is far from being a sequential process. For

example, decision usually involves preliminary domain analysis inverting the

sequential order on DSL development phases. Below is the description of what

encompasses each one of those phases:

Decision: involves the process of evaluating the task at hand and choosing to

solve the problem through the development of a DSL. In this process, it is

important to balance benefits and risks associated with the creation and usage

of the DSL.

Analysis: the problem domain is identified, domain knowledge is gathered

and elaborated to generate a domain model. Domain model varies widely

according to the methodology adopted in the analysis but consists of domain-

specific terminology and semantics. Three patterns can be recognized when

doing domain analysis for DSL construction: formal analysis, informal

analysis, and extract from code (semi-automated analysis).

Design: language designer crafts DSL notation including abstract syntax,

concrete syntax and static semantics. Mernik et al (2005) classify DSL design

patterns in an orthogonal spectrum where language design strategies are

positioned according to their level of formality (ranging from formal to

informal) and their relationship to existing languages (ranging from language

invention to language exploitation - extension, specialization or piggyback).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

49

Implementation: this is the point at which execution environments are

created for newly designed languages. For non-executable languages,

infrastructure for model transformation (code generation) is established. Here

again there are patterns. Table 3 presents a list of distinct approaches to DSL

implementation (MERNIK, HEERING and SLOANE, 2005; STREMBECK

and ZDUN, 2009; SPINELLIS, 2001).

Deployment: deployment is concerned with two aspects of DSL usage. First,

delivering it to users and second DSL maintenance. Deployment is out of e

scope since the DSL resulting from this research work is a prototype.

Decision criteria for developing a DSL for questionnaire modeling is based

on risks and benefits as presented in Section 2.5.2. In this dissertation, the decision

was made to develop a prototype for a questionnaire modeling language (SLang)

and validate its usage in the context of a real data collection application

(SInterviewer).

Analysis is covered in Chapter 3 and has the domain model as its output. After

reviewing domain analysis methodologies and tools, the choice was made to create

an informal model for SLang. In the future, that decision can be revisited in case

the lack of formality becomes restrictive for DSL evolution or usage.

Design and implementation phases are interrelated since implementation

provides the means to model transformations or model execution (if that is the case).

In this stage a critical decision regarding the development of DSLs take place which

is the choice of what tools will be used in language development. DSL design is

about defining language constructs and is an activity that has a lot in common with

creating programming languages in general.

The main design choices for SLang were that it would be a language invention

(tool choice had an impact on this decision) done in an informal way (no

mathematical models created). Three factors influenced the decision for an informal

design. First the development tool choice, discussed below, brings some level of

formality since the option was made to use a language workbench meta meta-model

do create a questionnaire meta model. Second most questionnaire concepts are data

structures that are documented and well understood. Third, questionnaires use

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

50

Boolean and arithmetic logic in questions presentation flow control that are well-

know and formalizing that would be useless.

Implementation usually follows one of the approaches listed in Table 3. Each

of those approaches has its strengths and weaknesses from a technical point of view.

External factors, such as the technological base on which resulting DSL code will

run and language purpose, are determinant in the choice of implementation strategy

to be adopted for DSL implementation (VASUDEVAN, 2011). The

implementation strategy also has a significant impact on the DSL development tool

choices. The decision was made to implement SLang prototype using a pre-

processor approach.

As the research and domain study evolved, it became clear that it doesn’t

make much sense to fully generate data collection applications from questionnaire

models as initially planned. Also, the scope for SLang left out questionnaire

presentation, limiting the possibilities for code generation.

A second important decision when planning implementation phase, is to

choose the right tool. Considering time constraints, language designer expertise on

target platform and level of tool support for language development and end user the

decision was made to use a language workbench.

Tools for creating DSLs can be classified in two categories: DSL

specification tools and language workbenches. DSL specification tools are an

intuitive way of creating compilers. Once the compiler is ready, there will be no

integration with other software engineering tools such as pretty printers or code

assistants. JTS (Jakarta Tool Suite) is an example of this kind of tool. Language

workbenches, on the other hand, support DSL creation not just in terms of parsing

and code generation. A language workbench provides better editing experience for

DSL users and allows DSL designers to create custom editors with functionality

similar modern IDEs (NASCIMENTO, VIANA, et al., 2012; CAMPAGNE, 2016).

The term language workbench was popularized by Martin Fowler (FOWLER,

2005) and refer to tools that support the efficient definition, reuse and composition

of languages and their IDEs. Language workbenches make the development of new

languages affordable and, therefore, support a new quality of language engineering,

where sets of syntactically and semantically integrated languages can be built with

comparably little effort. This can lead to multi-paradigm and language-oriented

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

51

programming environments that can address important software engineering

challenges (ERDWEG, STORM, et al., 2015).

Once seen as tools taking shape for the future with the promise to change the

face of programming, nowadays language workbenches are complete tools that

provide good support for DSL development. Still far from the predicted revolution

in programming, they do introduce two powerful fusions: tool with language, and

program definition with illustrative execution (FOWLER and MARTIN, 2009).

Implementation approach Description

interpretation or compilation

DSL is execution environment is created using the classical
approach to implement a new language. Standard compiler
tools can be used, or tools dedicated to the implementation
of DSLs.

extension of a
compiler/interpreter

DSL execution environment is created by extending a GPL
with domain-specific, constructs. The main advantage of
this approach is that all features of the base language
remain available and need not be reimplemented.

pre-processor

In this approach there is not an execution environment per
si. DSL constructs are translated to constructs in an existing
language by a preprocessor. The main advantage of this
approach is simplicity. Its main disadvantage is that static
checking and optimization are not done at the domain
level. Consequently, generated code is error prone, and the
user is provided with feedback on these errors at the level
of the base language, or only at run-time. The four sub
patterns bellow are relevant.

macro processing

Pre-processing happens through the expansion of macro
definitions.

source-to-source
transformation

Pre-processing happens through the transformation of DSL
source code is into a base language source code.

pipeline
Pre-processing happens through a pipeline of processors
that successively handle sublanguages of a DSL and
translating them to the input language of the next stage.

lexical processing

Pre-processing involves only simple lexical scanning,
without complicated tree-based syntax analysis.

Language specialization

Features of a base language are removed to create a DSL. A
representative case arises when requirements related to
the safety or security aspects of a system can be satisfied
only by removing some “unsafe” aspects.

Table 3 - DSL implementation patterns

Erdwerg et al (2015) present a feature model and proceed the analysis of the

solutions to a common problem to be solved by using a DSL and implemented in

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

52

ten distinct language workbenches. Problem considered aspects such as syntax,

model execution, model validation and IDE aspects.

The top five ranked solutions included Spoofax, XText, Rascal, MetaEdit+

and MPS language workbenches. The choice was made to procced with SLang

development using Meta Programming System (MPS), which is a projectional

editor. A projectional editor is a user interface that makes possible to create, edit

and interact with one or more ASTs avoiding the need to user tools such as parsers

(CAMPAGNE, 2016).

With a clear idea of what the development process is for creating a DSL, the

decision made to create the SLang questionnaire modeling language prototype and

with the tool for design and implementation defined, the work proceeded to analysis

phase.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

53

3
Survey Questionnaires Domain

3.1. Introduction

Chapter 2 presented the context in which the idea of a DSL based

questionnaire arises and points to the reasons why investigating the usage of a DSL

based MDSE approach for survey questionnaires modeling is valuable. With the

decision to develop a DSL made, the next step is to perform a domain analysis in

an attempt to improve decisions about DSL design and reduce the error margin

specially in what concerns what concepts should be included in the language

(MERNIK, HEERING and SLOANE, 2005).

The role of domain analysis is to acquire and consolidate information about

applications in the domain so that domain software infrastructure can be designed

reliably. Domain analysis main goals are to establish a terminology that is sufficient

for describing systems within an application domain and that is able to express all

basic concepts used: entities, activities, events, and the relationships and constraints

over them; to identify a set of architectures and components that can be used to

assemble implementations for every specification that can be formulated in the

language; to define a mapping to match specifications to relevant architectures and

components unambiguously and to define those architectures and components in

such a way that they can be adapted using pre-defined, minimum cost, structured

mechanisms (e.g., composition, parameter instantiation, and specialization)

(ARANGO, 1994).

When creating a DSL, domain analysis helps understanding clearly the

components, behavior and constraints to which a domain is subjected. It helps

establishing an important aspect of DSL design which is the ability to fully

understand the intended language usage scope while providing means to describe

the properties and the frequencies of the application in the domain, even if

inaccurately (LANDIN, 1966). Before starting the domain analysis phase, it is

important to have a clear view of what is a domain.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

54

In a broad context, a domain is a sphere of activity or interest. In the context

of software engineering it is most often understood as an application area, a field

for which software systems are developed (PIETRO-DÍAZ, 1990).

Voelter et al (2013) discuss the concept of domain considering a DSL context.

Defining 𝑃 as the set of all conceivable programs, a domain can be specified as a

subset 𝑃𝐷 formed by all programs 𝑝𝑙 that can be written using language 𝑙. From a

DSL point of view that definition is problematic, since it can be argued whether the

language 𝑙 is expressive enough to cover the whole of domain 𝐷. As such, two other

definitions might prove useful: one based on a bottom-up (inductive) approach and

the other on a top-down (deductive) understanding of domains.

In the bottom-up approach, the domain is defined as containing all

programs that are used to address a class of problems. This definition is free from

any language constraint and any Turing-complete language can express those

programs. But it is limited in the sense that there is no space for new or not yet

solved problems and, usually, such domains do not exist outside the realm of

software.

In the top-down approach the domain is defined by a body of knowledge for

which software support should be provided. As such, 𝑃𝐷 is the subset of programs

in 𝑃 that implement useful computations in 𝐷. The notion of domain is at the core

of DSL definition. Hence, be 𝑙𝐷 an DSL for domain 𝐷, this language should allow

the creation of all programs that are members of 𝑃𝐷. In this definition, the domain

drives the definition of the language. A second important aspect of a domain

definition is all programs in the domain must be well-formed since the domain is

the set of all structurally well-formed programs for an application context

(JACKSON and SZTIPANOVITS, 2006). Well-formedness implies formal

compliance, which requires a definition of what fits the form. As such, it is

necessary to have clearly stated what are the rules that govern the domain to which

models belong. That leads us to our next question. How should a domain be

specified? How to describe the domain?

Domain analysis is the activity of identifying the objects and operations of a

class of similar systems in a problem domain (NEIGHBORS, 1980). It involves the

identification, acquisition and analysis of domain knowledge to be reused in

software specification and construction (FALBO, GUIZZARDI and DUARTE,

2002). Through domain analysis information in a domain is identified, collected,

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

55

organized and represented based upon the study of existing systems and their

development histories, knowledge captured from domain experts and emerging

technology within a domain. As on step from Domain Engineering, domain analysis

has been said to be the main process for achieving reuse success in software

development (JATAIN and GOEL, 2009).

There are different approaches and processes to perform a domain analysis.

In common, they have the input, which includes sources of domain knowledge, and

output, which is a domain model or specification formalized with a set of artifacts.

The input usually includes technical documents (requirements, system manuals,

wireframes, etc.), knowledge provided by domain experts, source code, user

surveys, among others. The output includes all sorts of diagrams, models and

documents intended to form a cohesive description of the domain. The main goal

of the domain analysis process is to find the commonalities and variabilities in

software and systems that are part of the domain aiding in the reuse. The key to

reusable software in domain analysis is that it focuses in the reusability of analysis

and design, instead of focusing in code reuse (JATAIN and GOEL, 2009).

As mentioned above, there is not a single way of conducting domain analysis

(which is highly dependent on human artistry). Researchers and practitioners

propose multiple ways of doing it. From their efforts emerged methodologies,

software development processes and tools designed to aid in domain analysis or in

which domain analysis is a step. Among those are DARE - Domain Analysis and

Reuse Environment (FRAKES, PRIETO-DIAZ and FOX, 1998), DAAS - Domain

Specific Software Architectures (TRACZ, 1995), Fast - Family-Oriented

Abstractions, Specification, and Translation (WEISS and LAI, 1999), FODA -

Feature Oriented Domain Analysis (KANG, COHEN, et al., 1990), ODE -

Ontology-based Domain Engineering (FALBO, GUIZZARDI and DUARTE,

2002), and ODM - Organization Domain Modeling (SIMOS, 1995).

It is important to notice that those methodologies establish different

definitions and elect distinct sets of artifacts as necessary as a result of the domain

analysis process. For example, DSSA aims to reflect through the resulting model

the behavior of applications in the domain under analysis. To reach that goal

artifacts such as scenarios, a domain dictionary, a context (block) diagram,

entity/relationship diagrams, data flow models, state transition models, and an

object model are created. (TRACZ, 1995). FODA, on the other hand, defines a

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

56

domain model as a set of functions, objects, data, and relationships with a lot of

effort dedicated to model features and identify which features are common and

which are specific for applications under the domain. FODA domain model artifacts

include features of existing software in the domain, standard vocabulary of domain

experts, documentation of the entities embodied in existing software, generic

software requirements via control flow, data flow, and other specification

techniques (KANG, COHEN, et al., 1990).

At first, the process of creating a DSL might look as a mere question of

choosing an approach and tools since performing domain analysis without tool

support increases the risk of failure (LISBOA, GRACIA, et al., 2010). But some

issues arise: how mature are domain analysis tools and how should the choice of a

tool be made? Is traditional domain analysis adequate to a domain analysis aiming

at creating a DSL?

Lisboa et al. (2010) conducted a systematic review of domain analysis tools

concluding that there is no uniformity in processes supported or features offered in

15 tools analyzed. Also, gaps were perceived in the level of process support for all

investigated tools. As of 2019, the scenario has evolved but has not really changed.

Even though the need to clearly define the domain is recognized as a success factor

for the development of a DSL (KAHLAOUI, ABRAN and LEFEBVRE, 2008),

there is not a well-established process for domain modeling with a focus on

designing a DSL. There is some work on systematic approaches for creating DSLs,

but they do not contemplate how to perform domain analysis and prescribe generic

methods such as Domain-driven Design (EVANS, 2003). There is also very little

in terms of best practices on how to plan and execute domain analysis tasks when

constructing a DSL (CZECH, MOSER and PICHLER, 2018).

Even though domain analysis for DSL design and implementation is still

incipient, there is enough clarity on what are the basic tasks when performing it

(ARANGO, 1994). Those tasks, shown in Figure 9 can be defined as (LISBOA,

GRACIA, et al., 2010):

 Domain scoping: feasibility analysis and planning the domain;

 Data collection: gathering information from different sources, which

can vary from experts to documents;

 Data analysis: Description of reusable components, identifying the

similarities and differences between them;

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

57

 Classification: classification of the information, clustering similar

descriptions, abstracting relevant common features from descriptions

in each cluster and vocabulary construction;

 Evaluation of the domain model: evaluation and correction of any

defects found.

Figure 9 - Domain analysis tasks

The main goal of a domain analysis is to produce as output domain specific

terminology and semantics in a more or less abstract form (MERNIK, HEERING

and SLOANE, 2005). Hence, the option was made to use a combination of domain

analysis methodologies and techniques, adopting the ones that brought light into

survey domain aspects. To achieve that goal, the domain was analyzed and modeled

based on the process described in Figure 9.

This chapter describes the results achieved and the domain model created

according to the premises stated above. Section 3.2 presents the results of the

domain scoping and data collection activities. A clear domain definition is

presented as well as the result of data collection setting the bases for domain

analysis. Section 3.3 presents the premises used in the collected data analysis as

well as its main results. Section 3.4 presents the resulting domain model including

its general structure, vocabulary and semantics.

3.2. Domain scope

The first task in defining the domain scope is to clearly state what is the

domain all about. In the context of a DSL based survey, the term survey might be

problematic since it is widely used to identify in a generic way several distinct

research strategies. If using the term “statistical surveys” as a domain definition,

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

58

the adjective “statistical” helps to narrow the scope, but it is not enough since it

allows the inclusion of all sorts of data collection strategies besides the usage of a

questionnaire-based interview. One possibility would be to limit the domain scope

to questionnaires. Again, the problem of a generic term that leaves out the concepts

related to the usage of questionnaire in the context of statistical surveys would arise.

The survey definition presented in Chapter 2 was too broad since it did not specify

the instrument for performing data collection. Aiming at closing all the gaps, the

option was made to combine both statistical survey and questionnaires in the

domain scope. Thus, the scope of the domain that is focus of this research is

statistical surveys in which data collection must have the following characteristics

(GROVES, FOWLER JR., et al., 2009):

1. Information is gathered primarily by asking people questions.

2. Information is collected either by having interviewers ask questions

and record answers using forms or by having people read the

questions and record their answers using forms.

3. Information is collected from (a sample of) the population to be

described.

It is important to point out that, although sampling plays a big role in

statistical survey methodologies, sampling is not mandatory for a survey to belong

to the domain here specified.

With the domain scope clearly defined, the next step is to gather information

about the domain. This activity was done in two phases. First, a research was made

to locate previous domain analyses with the same or similar domain scope. Next,

actual domain data was collected. Statistical surveys that are part of the domain

range from simple straightforward surveys, with one theme and few questions with

straightforward answers to highly complex themes, with multiple steps questions,

specific question sequencing (not all questions are presented to all interviewees),

multiple distinct question types, complex answer validation and imputation rules as

the questionnaire based interview progresses. During data collection, the effort was

in gathering information from complex surveys since their characteristics easily

encompass the requirements for surveys with small, straightforward questionnaires.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

59

3.3. Data collection

Data collection was performed in two stages. First, research was made for

publications, studies and standards in which the domain defined had been analyzed

and modeled. The research was conducted using keyword searching the following

databases: IEEExplore, Scopus, ScienceDirect, ACM Digital Library and Springer.

Search was also conducted using Google considering the possibility of domain

analysis and domain models done in the industry and not reported in scientific

publications. Combinations of the following keywords where used in the search:

“survey”, “questionnaire”, “domain”, “domain model”, “domain analysis”,

“metamodel”, “metadata” and “statistical”. In this stage, three standards and one

ontology modeling the domain were found.

Next, survey and questionnaire specifications for complex surveys at IBGE

were reviewed and selected. Questionnaire specifications, statistical survey data

collection software requirements and documentation as well as source code where

collected. Section 3.3.1 describes bibliographic research results and section 3.2.2

the collected survey specification and software development artifacts found.

3.3.1. Existing survey models

Four survey domain-related existing models were found. Three of those

models are part of standards that are developed and maintained by entities related

to the statistical survey community. The third one is the result of a research aiming

at the development of questionnaire software for health care.

The United Nations Economic Commission for Europe (UNECE) develop

and maintain a series of standards that aim at providing a common basis to survey

processes that support technologies with the goal of facilitating storing, sharing and

reusing statistical data and metadata. Among those standards are: Generic Statistical

Information Model (GSIM), Data Documentation Initiative (also known as DDI)

and Statistical Data and Metadata eXchange (SDMX) initiative.

The Generic Statistical Information Model is the first internationally endorsed

reference framework of information objects, which enables generic descriptions of

the definition, management and use of data and metadata throughout the statistical

production process. It provides a set of standardized, consistently described

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

60

information objects, which are the inputs and outputs in the design and production

of statistics. As a reference framework, GSIM helps explain significant

relationships among the entities involved in statistical production and can be used

to guide the development and use of consistent implementation standards or

specifications (UNECE, 2019).

The Data Documentation Initiative is an international standard for describing

survey metadata, including questionnaires, statistical data files, and social sciences

study-level information. The DDI specification, most often expressed in XML,

provides a format for content, exchange, and preservation of questionnaire and data

file information supporting the description, storage, and distribution of social

science data in a machine-actionable and Web-friendly manner (WIKIPEDIA,

2019; DATA DOCUMENTATION INNITIATIVE ALLIANCE, 2019).

SDMX, which stands for Statistical Data and Metadata eXchange, is an

international initiative that aims at standardizing and modernizing the mechanisms

and processes for the exchange of statistical data and metadata among international

organizations and their member countries. It sets standards that can facilitate the

exchange of statistical data and metadata using modern information technology,

with an emphasis on aggregated data (WIKIPEDIA, 2019; STATISTICAL DATA

AND METADATA EXCHANGE, 2019).

GSIM, DDI and SDMX include models that represent the parts of the survey

and questionnaire domain with focus on a specific view. GSIM is looking at the

survey process as proposed by the GSBPM. DDI is interested in providing a pattern

for describing data to allow interoperability and uniformity. SDMX focus on

sharing metadata and aggregated. Some overlap exists between patterns. For

example, both DDI and GSIM provide elements to represent what is a questionnaire

and what is a question (GSIM, 2019). Considering the goal of this research, which

is to provide a DSL based approach for survey design, GISM and DDI models are

relevant inputs for domain analysis. Also, the proposed language should aim at

being compliant with both standards.

Besides the previously described standards, one study was found that aimed

at creating a survey model. Borodin and Zavyalova (2016) describe an ontology for

survey questionnaires. In the proposed ontology, a questionnaire is seen as a special

method of survey using forms which supports open-ended, closed-ended (also

called multivariate questions), sequencing and matching questions.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

61

Questions are characterized by properties that describe question format

(open-ended, closed-ended, sequencing or matching), their relationship to answers,

responses and question sequencing (this defines questions order in the

questionnaire). The ontology also defines classes that control questionnaire

navigation and responses. Questionnaire navigation allows the specification of rules

for skipping questions and conditional flows that customize question order.

Responses allow full control of respondent feedbacks in questionnaire, question and

answer level (BORODIN and ZAVYALOVA, 2016).

Qtd Type of data Description

6 Questionnaire specification Actual questionnaire used by a survey
including rules for sequencing
questions, question and answer
descriptions and some validation
rules. File format varies depending on
the area responsible for the
questionnaire (usually done in a text
file or spreadsheet).

6 Questionnaire validation rules Specific text file containing questions
validation rules.

2 Data imputation Specific text file containing
imputation rules.

6 Project source code Source code for data collection
applications. 5 data collection
android-based projects and 1 data
collection for the web project

1 Variable calculus rules Text file with rules for calculating
derived variables

7 Survey data dictionary Spreadsheets describing relational
database schemas used to store
collected data.

7 Questionnaire metadata using json notation Some of the analyzed statistical
surveys use a json notation to store
questionnaire metadata used to
control the data collection
application. The notation syntax and
semantics varies for each survey.

4 Expert interviews See appendix I
1 Standards Industry specification that provides

models that are included in the
domain scope.

Table 4 - Data collection results

The proposed ontology works well for questionnaires with simple navigation

rules, but it lacks support for: grouping questions by theme, answer validation and

objects of interest creation among other requirements from complex surveys (Table

1). Also, the ontology mixes questionnaire presentation and questionnaire modeling

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

62

by specifying multiple options for closed-ended multivariate questions

presentation. Still, it is a good reference and source of ideas for the survey domain

model main concepts and their relationships.

3.3.2.Survey and questionnaire documents

In the second stage of the data collection effort, survey and questionnaire

related documents were collected. Among the collected data were questionnaire

specifications, questionnaire validation rules, data imputation rules, data collection

software source code, survey data dictionaries, questionnaire metadata and

interviews performed with domain specialists from different areas involved in the

planning and execution of IBGE surveys. Table 4 presents a list of the collected

data.

3.4. Domain model

3.4.1.Discussion

The main objective of domain data analysis is to identify key domain entities,

as well as basic operations on those entities (THIBAULT, MARLET and CONSEL,

1999). It is also important to understand how entities are related and what are their

frequencies (LANDIN, 1966). But, as explained in Section 3.1, there is no precise

definition on what is enough to characterize a domain model (each domain analysis

methodology has their own set of artifacts). As a matter of fact, domain analysis

methods are a product of software reuse premises that express different views of

what reuse is. As such, those methodologies are not exactly tailored for DSL

creation, even if prescribed by some authors (MERNIK, HEERING and SLOANE,

2005) as the solution for DSL development analysis phase. Still domain analysis

provides insights and information necessary for domain modeling.

Domain models must incorporate domain behavior and data (FOWLER,

RICE, et al., 2003). Its importance for creating DSLs cannot be ignored since DSLs

are thin layers over models. The domain model should be designed around the

purpose of the DSL and be useful without the DSL present. Fowler presents the

concept of Semantic Models, which should capture all semantic behavior in a subset

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

63

of domain concepts through behaviorally rich object models that provide insights

about the core behavior of a software system. Semantic models can be as simple as

a data structure represented as object model, which can be manipulated in the same

way as any object model, but represent only a subset of models from the domain

(FOWLER and PARSONS, 2014).

Fowlers approach makes a lot of sense. Considering the goals for creating

DSLs, to produce a full application model includes a series of concepts that are not

always important for the DSL to be designed. For example, in the context of a

questionnaire description DSL, issues pertaining question presentation and

questionnaire UI are not important. Consequently, question presentation aspects

won’t be present in the semantic model that supports such a DSL.

With that information in mind, data classification was performed by the

revision of all the collected documents and the creation of an object model aiming

at fully representing questionnaire semantics.

As a criterion to decide what should be part of the model the DSL main

purpose was: to provide a mean for domain experts to control questionnaire

specification. Questionnaire presentation was considered out of scope as well as

implementation related concepts. On the other hand, interview and answer concepts

were considered part of the scope since both embrace aspects that domain experts

need to control and specify.

3.4.2.Domain model structural aspects

The structural domain model is organized according to surveys three

categories of information: metadata, data and paradata as presented in Section 2.1.

The notation used was adapted from UML class diagrams.

Classes or concept are represented in boxes. Concepts branded with an italic

font represent abstract types and interfaces. Relationship are represented by lines

connecting two concepts and use the same notation for the association, aggregation,

composition and generalization. Associations, aggregations and compositions

present cardinalities that account for concepts frequency.

An additional type of relationship is represented with a dotted line indicating

that those relationships are realized by convention without being formalized in the

data collection application data structures. Such relationships bridge the boundaries

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

64

of metadata, data and paradata allowing to represent properly the existing

relationships shared by those distinct classes of survey information. Domain

collected data analysis shows, for example, that there is no formal link between a

survey and an interview. That relationship exists only by convention. As a matter

of fact, the link between a Survey and its associated Interviews is established by the

fact that all interviews from a survey are stored in a specific database. In another

example, the relationship between an EntityGenerator and an Entity happens only

during the creation of an entity, having no other formal expression. Formal

relationships are represented by solid lines. Each relationship also has an associated

cardinality to indicate more clearly how the relationship frequency.

3.4.2.1.Metadata structural model

Metadata concepts define survey structure as well as consistency and integrity

standards that will be applied to data during collection. Their structure is presented

in Figure 10.

Survey and Dictionary are the root concepts that tie together the metadata

concepts structure. The Survey concept holds general survey attributes, as well as

references to survey configuration parameters, a list of constants and a list of

associated metadata that allows for further survey configuration.

When creating a survey, the first important concept to be defined is

ObjectOfInterest. Objects of interest define a class about which the survey will

collect data reflecting the kind of entities the survey aims to investigate. Surveys

can have one or more objects of interest, but at least one is mandatory. As an

example, demographic censuses usually have at least two objects of interest: houses

and people. In most cases, people are further divided into house inhabitants,

deceased people and people that emigrated. Objects of interest are closely related

to EntityGenerators.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

65

Figure 10 – Metadata domain structural model

Each object of interest holds a group of themes, each Theme a group of

question sets, and each QuestionSet a group of questions. Themes and question sets

are concepts responsible for the organization of questions in groups. Themes help

organizing questions in terms of knowledge clusters. For example, the 2015 PeNSE

survey had question organized in themes such as student socio-economical aspects,

family context, eating habits, physical activity, among others. Question sets add

another layer to questions organization that allows grouping questions inside a

theme. For question sets, the grouping can have distinct semantics that might be

defined by the questionnaire creator. The reason to create a new question set might

be, for example, to create a validation rule that involves multiple measurements or

hold interview instructions that are pertinent to a theme subset.

Questions are linked to a QuestionSet and are the core of the survey

questionnaire. Each Question has a group of question items. Each QuestionItem is

directly linked to a Measurement. At first sight, it might seem enough to link one

measurement to each Question. But that is not true. As pointed before, a question

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

66

might comprise multiple question items (or requests for answers) (SARIS and

GALHOFER, 2014). For example, consider a question about telephones in houses.

Domain experts might choose to design it in two steps. In step one, the person

answers if the house has a telephone line. In step two, the person answers the

number (in case the answer in step one was positive).

One might wonder why the choice was made to use this concept hierarchy to

organize questionnaire information. This decision was made based in the collected

data, aiming at providing a structure flexible enough to support all the questionnaire

samples collected. This hierarchy accounts for what a questionnaire designer might

want to ask. The other side is how potential answers should be organized and all

that starts with the dictionary.

Dictionary is a concept with the only function of grouping and providing a

unified view of survey measurements. A Measurement is the survey’s main goal

and, in the scope of the defined domain, are taken through answers received from

an individual that represents an entity under investigation. As previously noted, a

Measurement does not have a relationship with Question. Measurements are linked

in a one-to-one relationship with question items, where the question item is not

mandatory, allowing the flexibility to create questions with multiple answers and to

created derived measurements, which are not related to a question. Also,

measurements must be associated to a QuestionItem. That is the case of

measurements that are calculated from other measurements.

Measurements are part of a generalization hierarchy. The first level of this

hierarchy consists of three possible data types for measurements: text

(TextMeasurement), numbers (NumberMeasurement) and dates

(DataMeasurement). Numbers can be further specialized to support domain and

calculated measurements. A DomainMeasurement extends NumberMeasurement

by allowing the user to associate a domain list, which is basically a map were an

integer is the key and a string is the value. A CalculatedMeasurement has a rule

that specifies what the value of the measurement should be based on questionnaire

parameters and other measurement values. Filters allow controlling Domain

measurements option though the association of a filter that use expressions to define

if a domain item should be available to be selected as a measurement value.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

67

Three other concepts are applied to the domain structure through

generalizations, realizing important aspects of survey model: Identifiable,

EntityGenerator and NavigationItem.

Navigation items are responsible for registering the questions presentation

sequence. It is closely related to the questionnaire questions hierarchy (navigation

items behavioral aspects are described in Section 3.4.4.). They hold attributes that

help govern the sequence questions should be presented to the user and that allows

to monitor questionnaire answer evolution (order and status attributes). Navigation

items also allow to specify skip or review questions using the go to attribute. From

a structural point of view, they also allow associating questionnaire hierarchy

concepts validations and triggers, which are used to guarantee measurements

consistency.

Validations allow the questionnaire designer to define when an answer is

acceptable by specifying expressions. Expressions are evaluated to a Boolean value

and used when defining navigation, as survey measurement values, constants and

literals. Mapped Boolean operators are presented in Table 5. Three types of

validation were mapped: informational validations, alert validations, error

validations.

Triggers allow the execution of specific actions according to the result of a

Boolean expression. One example of action is resetting previous answers. One

might wonder what the difference between a trigger and a validation is. As a matter

of fact, there is little difference. Trigger are simpler and dissociated from

respondents’ actions. As such, triggers don’t have, for example, a message attribute.

An EntityGenerator is responsible for objects of interest creation. There are

basically two object of interest creation modes. Theme-based creation and question

item-based creation. Theme-based entity generators use a Theme as a basis for

creating and editing objects of interest instances. Question item-based entity

generators indicate an object of interest instance creation whenever a question item

is answered.

An example of the first case is registering household members in a

demographic census. The theme questions work as the specification of the attributes

that the generated entity must have providing the basis for the creation of entities

management (creating, updating and deleting) in a questionnaire.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

68

An example of the second, is creating one object of interest item for each

permanent culture an agricultural establishment grows. For example, a question

might ask the respondent to select his establishment production from a list of

cultures (for example, apples, avocados, grapes, oranges, peaches and pears). If the

respondent selects apples and peaches, two permanent culture objects of interest

should be created: one for apples and another one for peaches

Finally, each survey metadata object is an Identifiable which means that they

can be uniquely identified in a survey metadata environment. Each Identifiable

holds a code and a parent code and might be uniquely identified by the combination

of its own code with its parent code.

3.4.2.2. Data and paradata structural model

Questionnaire data information follows a very simple structural model

presented in Figure 11. Interview is the root concept and is basically a container for

entities. It also keeps operational information about the questionnaire such as the

last viewed item and how far the respondent has navigated the questionnaire. Each

Entity is an instance of an object of interest and holds a set of answers.

An Answer holds the value from a specific measurement. In the documents

and source code analyzed the relationship between answer and a measurement is in

general made by convention. Hence, the option was to connect those two concepts

with a dotted line. Still, it should be pointed that, for a specific interview, a

measurement should be answer only one time, which accounts for the 1..1

cardinality in the relationship between measurement and answers. A second

relevant point regarding this issue is that it makes no sense to talk about answer

domain, filter or calculus. That is the reason why there is no parity on the

Measurement and Answer specialization structure. Answer specializations are

TextAnswer, NumberAnswer and DateAnswer. Filters are another concept that have

no parity in the data structure.

Questionnaire paradata, as shown in Figure 11, holds two independent

concepts: Summary and Log. The summary contains a map of aggregates that can

be specified by the user. It can, for example, define a group of variables mean

calculus or the number a given object of interest instances count. Aggregates are

specified using rules (detailed in Section 3.4.3).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

69

Figure 11 – Data and paradata structural model

There are six types of Logs: DatetimeLog holds specific information about

dates, for example, the date on which an interview was initiated; TimeLog keeps

track of time spans such as the time a respondent spends answering a question;

LocationLog registers latitude and longitude values; StatusLog keeps track of status

changes (section 3.4.4) as respondent is answering the questionnaire; A ValueLog

registers changes in answers and NavigationLog information about the sequence

themes, questions sets and questions are presented to the respondent.

The relationship between logs and interview is modeled using the weak

representation of concepts association. In the analysis it was noted that due to the

large number of logs compared to survey answers, logs usually receive a distinct

treatment regarding storage and software design patterns. As such, it seems that

they are better modeled without strong correlations with the other concepts.

3.4.3. Domain model transversal concepts

Two concepts are transversal in the sense that they are related to survey

concepts but in a very independent way: Expression and Rule. Expressions evaluate

to a Boolean value that is used, for example, to define validations status,

NavigationItem visibility or if a Question is mandatory. Rules can be used to

generate CalulatedVariable values or in a rule-based Action.

Expressions support Boolean operators, arithmetic operators, comparison

operators, set operators and aggregation operators. Valid operands are literal

Boolean values (true and false), strings, literal numbers (decimal or integer),

measurements and survey constants. Sets are defined using parenthesis to indicate

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

70

beginning and end of a set definition and commas to separate their elements.

Expressions are evaluated from left to right, using Boolean logic and arithmetic

precedence rules. Parenthesis can also be used to override precedence conventions.

operators
(V0001 = 5 V0002 = 1)

type operator example result

Boolean

and V0001 == 5 and V0002 != 0 TRUE

or V0001 == 5 or V000 1 == 6 TRUE

not not(V0001 == 5 or V000 1 == 6) FALSE

empty empty V0001 FALSE

comparison

equal V0001 equal 6 FALSE

not equal V0001 not equal 6 TRUE

greater than V0001 greater than V0002 TRUE

less than V0001 less than 0 FALSE

greater than or equal to V0001 greater than or equal to 6 FALSE

smaller than or equal to V0001 smaller than or equal to 1 TRUE

arithmetic

* V0001 * 6 30

/ V0001 / 5 1

- V0001 - 5 0

+ V0001 + 6 11

set

min min (V0001, V0002) 1

max max (V0001, V0002) 5

in V0001 in (1,3,5) TRUE

out V0001 out of (1,3,5) FALSE

aggregation
mean mean(V0001, V0002) 3

sum sum(V0001, V0002) 6

Table 5 - Operators supported by expressions

Calculus rules always evaluate to a number and use only arithmetic

operators and aggregation operators. Operands might be literal numbers (decimal

or integer), measurements and survey constants.

3.4.4.Domain model behavioral aspects

Each survey has a questionnaire instance with themes, questions,

measurements, etc. The questionnaire data counterpart is the Interview. The

interview is the materialization of the questionnaire as a measuring instrument. Two

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

71

important aspects of this relationship are navigation and state. As described in

Section 3.4.2.1 and 3.4.2.2, triggers and validations are combined with expressions

to control navigation. As the respondent navigates through the questionnaire

navigation items will evolve through potential states according to respondent

answers.

The domain model behavioral aspects are closely related to questionnaire

navigation and to navigation items states, which are controlled by validations,

triggers and expressions. Figure 12 shows the generalization relationships for

QuestionItem, which is by inheritance a NavigationItem. A QuestionItem has two

Expression attributes: mandatory and visibility. Visibility controls if a navigation

item should be presented or not to the user according to the expression assigned to

it. Mandatory attribute is used during validation cycle and be a shortcut to an actual

Validation. The evaluation of the mandatory expression defines whether or not a

QuestionItem should be answered.

Figure 12 - Navigation item generalization

Navigation behavior is responsible for the evolution of question and

questionnaire states. During an interview, usual navigation can happen vertically

and horizontally from a starting point. Vertical navigation occurs whenever

horizontal navigation has reached its end. Horizontal navigation happens by going

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

72

through all nested navigation items one by one (Figure 13). As such, there are two

events happening: horizontal navigation events and vertical navigation events.

Figure 13 - Navigation sequence through navigations items hierarchy

A navigation item can have four states: NOT ANSWERED, VIEWED,

SKIPPED and ANSWERED. The initial state is always NOT ANSWERED. A non-

answered navigation item can either move to state VIEWED any time it is the next

navigation item and its visibility evaluates to true. The non-answered navigation

item can also move to state SKIPPED in case it is not visible whenever it becomes

the next navigation item. A viewed item is going to stay VIEWED until it is valid,

and it can be moved to ANSWERED. An answered navigation item can, during

navigation, became not visible. In that case, it will move to state SKIPPED. A

SKIPPED navigation item can at any time became visible and move to state

VIEWED. Figure 14 presents the state diagram representing the possible state

evolution for navigation items.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

73

Figure 14 - Navigation items state diagram

The transitions above represented are consequence of the actions that are

executed when a navigation (horizontal or vertical) happens. This sequence of

actions is described in Figure 15. Whenever there is a navigation event, the first

action to be executed is to run the navigation item validations. If the item is not

valid. Navigation is aborted. If it is valid, triggers are run, the item is marked as

ANSWERED and the next navigation item is retrieved. If the next navigation item

is not visible, it is marked as SKIPPED and the next navigation item is again

retrieved. When a retrieved navigation item is visible, there is a check to see if it is

answered. If it is, navigation is completed. If it is not, it is first marked as VIEWED

before navigation finishes.

Figure 15 - Navigation activity diagram

The final aspect of questionnaire behavior is state. Questionnaire states are

important for monitoring the survey (to guarantee data quality ideally you need

complete questionnaires) and are registered in the Interview concept. Three states

are possible: NOT STARTED, PENDING AND FINALIZED. Interview states are

calculated based on navigation item states. An interview is marked as NOT

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

74

ANSWERED whenever all its navigation items are marked as NOT ANSWERED.

It is marked as FINALIZED whenever all its navigation items are marked either as

SKIPPED or ANSWERED. Finally, all other status of navigation items results in a

PENDING interview.

With a good domain model, imagination can do its part to create powerful

and natural data types and data structures. During implementation phase, the

language designer will identify data types and data structures, naming, binding,

control and syntax. Data types are a direct consequence of the application domain.

Hence the importance of a good domain model. Operations follow from the data

types. The notion of an operation set as being proper to a data type is very powerful.

Names, binding times, naming semantics and control structures are not always

mandatory for DSLs, but here the language designer has a lot of freedom. Finally,

the central question when designing a language: what is a natural syntax that makes

it easy to say what one means? (BROOKS JR, 1996). Chapter 4 describes the design

and implementation of Slang, a prototype DSL for questionnaire specification.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

75

4
SLang

4.1. Introduction

As presented in Chapter 2, DSLs are not new. They have been around for

quite a while. There is some work on best practices (CZECH, MOSER and

PICHLER, 2018) and attempts to systematize DSL design and implementation

(STREMBECK and ZDUN, 2009). Also, there is guidance and documentation on

what are the basic principles for implementing them. 76% of the best practices

mapped by Czech et al (2018) where reported before 2010, indicating some level

of consolidation on the subject. Still, the work on methods, processes and

techniques is limited and most of the research on DSLs focuses on the creation of

actual DSLs. That makes DSL implementation quite an open field where there are

general guidelines, lots of experimentation and little guidance on how to choose

between the available methods and tools. Most of the experimental work revolves

around the creation of external6 DSLs in domains that range from robots and control

systems to Web based applications (NASCIMENTO, VIANA, et al., 2012).

This scenario directly affects the ability to tackle the main challenge when

creating a DSL: how does a DSL designer finds the right abstractions? Research

and industry practice bring little guidance on how to map domain models to DSLs

concepts and syntax. This challenge is not only a technical one, but also involves

aspects of human cognition and other complex issues that are related to the

difficulties of human social interaction and of natural language usage for

communication (CZECH, MOSER and PICHLER, 2018; FRANK, 2011).

For those with experience in GPL development it is important to know that

DSL implementation differs from the implementation of a general-purpose

languages. Compilers for general purpose languages are typically structured as a

lexical analyzer, a parser, a semantic analyzer, an optimizer, and a target code

6 A completely separate language, for which you write a full parser, usually using a parser

generator.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

76

generator. DSLs on the other hand have a limited scope and are usually very small.

Their lexical, syntactic, and semantic simplicity often make elements required by a

GPL unnecessary. In addition, the often-limited user population of a DSL does not

justify high costs and a large team of developers. That reality forces DSL developers

to choose cost-effective implementation strategies. Finally, when DSLs are part of

the development of a larger system, schedule pressures drive language developers

to implementation methods that can rapidly deliver results (SPINELLIS, 2001).

When looking for principles to support choices about DSL design and

implementation, some guidance can be obtained from DSL development success

factors. Among those success factors are language designer having a high level of

domain expertise, a well done domain scoping, choosing the best support tools to

aid in all stages of DSL development (analysis, verification, validation, code

generation), use of effective meta models, good underling generator to transform

DSL models into target platform code, using a high level of abstraction,

development done in a domain engineering environment, having good language

development expertise, use of view-point orientation to separate and organize

stakeholders concerns, purpose orientation defining the particular problem in the

domain the DSL aims at solving, domain expert support, usage of an effective DLS

definition process (CZECH, MOSER and PICHLER, 2018).

This chapter describes the process of transforming the model created in

Chapter 3 into a DSL for survey questionnaire specification. Section 4.3 details

design and implementation premises already presented in Section 2.5.4. Section 4.3

DSL introduces formal definitions for some DSL design and implementation

terminology. Section 4.4 describers and presents examples of SLang abstract and

concrete syntaxes and Section 4.5 discusses model transformations. Finally, Section

4.6 presents SLang evaluation.

4.2. SLang design and implementation premises

Design guidelines for programming languages have been extensively

discussed. Principles such as simplicity, security, fast translation, efficient object

code, and readability are well established as programming languages design

guidelines. For DSLs, the general principles are simplicity, uniqueness, consistency

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

77

and scalability. Still it is necessary to translate those general principles into

guidelines for DSL design.

Category Guideline

Language purpose

Identify language uses early

Ask questions

Make language consistent

Language realization

Decide carefully whether to use graphical or textual realization

Compose existing languages where possible

Reuse existing language definitions

Reuse existing type systems

Language content

Reflect only the necessary domain concepts

Keep it simple

Avoid unnecessary generality

Limit the number of language elements

Avoid conceptual redundancy

Avoid inefficient language elements

Concrete syntax

Adopt existing notations domain experts use

Use descriptive notations.

Make elements distinguishable

Use syntactic sugar appropriately

Permit comments

Provide organizational structures for models

Balance compactness and comprehensibility

Use the same style everywhere

Identify usage conventions

Abstract syntax

Align abstract and concrete syntax

Prefer layout which does not affect translation from concrete to
abstract syntax

Enable modularity

Introduce interfaces

Table 6 - DSL design guidelines

Karsai et al (2009) elected 26 guidelines organized into five categories: (1)

language purpose for design guidelines applicable to the early activities of the

language development process; (2) language realization for guidelines which

discuss how to implement the language; (3) language content for guidelines which

focus on the elements of a language; (4) concrete syntax for design guidelines

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

78

related to the readable (external) representation of a language; (5) abstract syntax

concentrates on design guidelines for the internal representation of a language.

While developing SLang, an effort was made to follow the guidelines on Table 6

as a mean to mitigate the risk brought by the lack of language development

experience.

Decision Criteria Description

Concept belongs
in the language?

Noteworthy level of
invariant semantics

If a term can be expected to have the same
meaning across all application areas a DSL is
supposed to cover, it can be regarded as a
candidate for being incorporated in the
language.

Concept belongs
in the language?

Relevance

If a concept is expected to be used on a regular
base, making it part of the language would
increase the languages value for most users. If it
is required in rare cases only, it would increase
the size of the language, hence make it more
difficult to learn, while at the same time most
users would not benefit from it.

Concept is a meta
type or a type?

Noteworthy semantic
differences between
types

From a formal point of view, a meta type should
allow for a range of types with clear semantic
differences. If the types that can be instantiated
from the potential meta type are all too similar,
the effort it takes to define the types is
questionable.

Concept is a meta
type or a type?

Instance as type
intuitive

This criterion emphasizes language ergonomics.
Would it correspond to the common use of the
term to regard its instances as types? Hence,
would instances be regarded as types intuitively
by prospective language users or would they
rather be interpreted as representing instances
of the respective domain?

Concept is a type
or an instance?

Instance as abstraction

There are terms that emphasize abstractions by
their very nature. Therefore, they resist against a
clear distinction between the type and the
instance level.

Concept is a type
or an instance?

Invariant and unique
instance identity

Sometimes, it makes sense to represent objects
in a model that clearly qualify as instances.
Examples include cities, countries or particular
organizations. Apparently, these examples have
in common that the respective instances have a
unique identity that is relevant, i.e. it makes a
difference, for the modelling purpose.

Table 7 - Domain model to language concepts mapping – adapted from (FRANK, 2011)

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

79

During the design phase of DSL development, the domain model must be

mapped to language constructs to formally defined language abstract syntax,

concrete syntax and static semantics. The focus should be on the M1 level of the

layered MDSE architecture (2.4.1) and will constantly require analyzing whether a

domain-level term is suited to be represented as a meta type (to be part of the

language) and having a clear understanding of which concepts of your domain are

potential instances (FRANK, 2011).

Table 7 presents some decision patterns that were used for guiding design

choices for SLang. For example, Interview and Answer domain model concepts,

were considered of low relevance for SLang users since their usage is not necessary

when modeling a questionnaire. As for logs, the lack of noteworthy level of

invariant semantics, the decision was made not to bring it into the language.

4.3. DSLs design and implementation terminology

When discussing DSL design and implementation it is important to set the

grounds about the terminology involved. Here the main concepts related to DSL

design and implementations are presented:

The abstract syntax is a data structure that can hold the semantically relevant

information expressed by a program. It is typically a tree or a graph. It can be a

synonym to metamodel and is the result of an exercise of abstraction and

conceptualization followed by a synthesis of the domain knowledge done by a

modeling language architect through direct interaction with the domain experts. It

also includes structural or static semantics, which is mainly focused on setting

binding rules among its elements (VOELTER, BENZ, et al., 2013; SILVA, 2015).

The abstract syntax tree (AST) is a data structure used to computationally represent

the abstract syntax used by compilers to represent and manipulate programs. Nodes

in an AST can be of different types, often arranged in one or more concept

hierarchies. (CAMPAGNE, 2016)

The concrete syntax defines the notation with which users can express

programs and, as such, defines the way users will learn and will use it, either by

reading or by writing and designing the models. Notation is decisive for user

experience when working with a language and it is important to look for the right

balance between simplicity and expressiveness. The following concerns should be

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

80

addressed when designing a concrete syntax: writability, readability, learnability

and effectiveness (VOELTER, BENZ, et al., 2013; SILVA, 2015).

The static semantics of a language is the set of constraints and/or type system

rules to which programs have to conform, in addition to being structurally correct

with regards to the concrete and abstract syntax (VOELTER, BENZ, et al., 2013).

The execution semantics refers to the meaning of a model once it is executed.

It is realized using the execution engine and describes the behavior that a computer

should follow when executing a model in that language. This specification can

describe the relationship between the input and output of a program or can provide

a step-by-step explanation on how a program will execute on a real or virtual

machine (VOELTER, BENZ, et al., 2013; SILVA, 2015).

The pragmatics of a language is related to the definition and discussion of

aspects related to language use in practical contexts, namely in the definition of its

types of users or roles, the activities to be conducted, and various factors that may

constraint themselves (SILVA, 2015).

SLang was developed using the MPS (Section 2.5.4). To understand SLang

design decisions, it is important to understand some aspects of MPS.

The first important fact is that, as a language workbench, MPS allows to

construct at the same time a language and the tools to use that language. As such,

during language design, meta model and model creation tool, also known as

language integrated environment (IDE), are being designed. A second aspect is that

MPS uses the concept of module for languages in a way that it is possible to

combine existing languages while creating a new one.

MPS is a projectional editor. As such, when creating a model, the user is

directly manipulating the model AST by removing or adding nodes. That means

that there is no need for parsers, since the model is already represented in a tree

format. Each AST node can have a parent node, child nodes, properties and

references to other nodes. Nodes that do not have a parent are called root nodes

which are the top elements of a language. Each node when created is associated to

a concept that defines the structure of the node. As such, concepts account for the

many differences among language nodes creating a “type” that connects nodes with

the same structure (properties, references, etc.). Each concept can have one or more

editors associated that define the way a model designer can interact with a node

considering its structure. It is through the editor that the language under design has

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

81

its concrete syntax defined. By using an editor, a model designer is creating and

modeling ASTs. The editor also allows to setup common integrated development

environment functions such as inspector, context menus, autocompletion and

context actions among others.

Language structural behavior can be constructed on top of concepts using

behavior aspects. It is possible, for example, to attribute default values to properties

as well as create and manipulate child nodes and references. That is done through

the creation of concept constructors and concept methods. MPS offers a set of base

languages, such as sModel and baseLanguage, that are very useful for AST

manipulation.

Static semantics is established through constraint aspects and type system

aspects. Constraint aspects help to control where concepts are allowed, valid values

for properties, valid options for a reference, among others. Type system aspects

define semantic aspects that cannot be modeled using concepts structure and

constraints. For example, preventing nodes with the same name to exist in a specific

scope cannot be done using concept structure or constraints. Constraints and type

systems provide hooks that are used by MPS to provide user with static semantics

functionalities, such as context assistance and error reporting, in the final language

IDE generated using MPS.

MPS supports two types of model transformation: M2T and M2M. TextGen

aspects are responsible for transforming an AST to text. Currently, MPS supports

the generation of one text file per AST root node, by allowing the mapping of each

of the root concept children to text all the way down to primitive types which have

a direct conversion to text. M2M transformation are supported by the generator

aspect. There are two possibilities of M2M transformations in MPS:

transformations that completely preserve semantics of an input node in the output

node and transformations that allow input simplification. M2M can be used in two

ways: to convert language constructs from one model to another (useful for

language evolution) and to convert a model between languages.

MPS has two more interesting aspects. First, MPS provides a build language

that can be used to export combinations of languages into a refined IDE for the

creation of models. Second, there are also tools to support language evolution

through the creation of migration scripts.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

82

4.4. SLang

SLang was constructed with focus on questionnaire specification. First, using

the criteria and principles presented in Section 4.2, domain model was mapped into

MPS concepts. In the process of designing the language two purposes appeared:

questionnaire specification and data collection application configuration (data and

paradata). It was decided to focus the work on questionnaire specification, since

that is the first stone on top of which other languages can be created and combined

to address issues related to other purposes. As such, SLang, at this moment, is not

an executable language.

Language design was done by analyzing each domain model item and making

a choice about its representation on MPS. From that, an initial conceptual structure

was defined, and concrete syntax was created using MPS editors. Next, behavior

and static semantics were reinforced using behavior, constraint and type system

MPS aspects. This cycle was iterated a couple times until there was language

complex enough to attempt language transformations. Three model transformations

were implemented: SLang to SQL database schema, SLang to application specific

metadata notation and SLang to java model. Finally, using MPS build language,

SMaker (SLang IDE) was generated. This section presents a description of SLang

with its main concepts, syntax and semantic aspects.

4.4.1.Abstract syntax

Figure 16 is a simplification of what SLang AST looks like and tries to

provide an idea of how concepts are organized from an MPS point of view. In the

diagrams, round rectangles represent nodes or concepts. Arrows make the link

between parent and child concepts forming the AST branches. Doted arrows are

used to specify non mandatory parent/child relationships. AST does not display

generalization relationships which are also very important for language structure.

To minimize that, concepts identified using an italic font, are abstract concepts and

part of a generalization structure.

All concepts specialize the Identifiable abstract concept, making each one

unique in the survey scope. For navigation items, Identifiable generates

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

83

identification automatically considering each item position in the navigation

structure.

SLang root concept is Survey. Dictionary and Survey are related in a one-to-

one composition which is slightly different from domain model design. Initially,

SLang was designed to have Dictionary as second root concept. The option of

making it a child of Survey was made after talking to domain experts, who pointed

out that dictionaries are survey specific. With that in mind, the option to remove

completely the dictionary concept was considered. Again, the exchange with

domain experts pointed the relevance of the concept as a mean to provide a wrapper

that keeps together all survey measurements. In Figure 16 simplified survey AST

is possible to see how SLang reflects survey content hierarchy.

Figure 16 - Survey AST

An important aspect not shown in Figure 16 is the use of specialization.

Based on MPS abstract concepts NavigationItem replicates the domain model

design by providing the generic type that Theme, Question Set, Question and

Question Item specialize in a generalization relationship equal to the one displayed

on Figure 12.

Each NavigationItem can have multiple validations and triggers that form

branches of the Survey AST. Validations have one child concept which is an

Expression. Triggers have two child concepts: one Expression and one Action.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

84

Actions have one child Rule and can have multiple child measurements. Actions

are part of a generalization structure similar to domain model actions design. Those

actions are used to specify changes that should happen in answers and navigation

item states according to measurement values. Figure 17 represents navigation item

ASTs.

Figure 17 - Navigation Item AST

Expressions and Rules use the same constructs. As a matter of fact, Rules are

an Expression specialization. SLang support tree primitive types: number, Boolean

and text. Primitive types serve as wrappers for measurements, constants and literals

which are the concepts that can be part of expressions. Operators wrap arithmetical,

logic and comparison operators. A specialization of Expression defines the concept

of Function that allows the implementation of set and aggregation operators (Table

5). Here implementation takes a very distinct approach from the one that should be

taken in case of an executable language. Expressions, Operators and Primitives are

used to check if expressions are semantically valid by match types.

As explained in Section 2.2.3, sometimes a questionnaire has more than one

object of interest. In the model, this aspect is organized through the “object of

interest” attribute from Themes. This attribute is mandatory and, as such, each

Theme concept is linked to an ObjectOfInterest concept. It is also common the need

to dynamically create objects of interest (for example, inhabitants of a household

during enumerations and censuses). Two concepts can be marked as entity creators:

themes and questions. Both concepts have a Boolean attribute “creator” that

whenever set to true marks that concept instance as a specific object of interest

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

85

entity creator, and an object of interest attribute that indicates the type of entity to

be created.

Figure 18 - Expressions AST

Objects of interest also have an important role when executing an interview,

since each question context is defined by the entity (defined by an object of interest)

to which the question is associated and its type. As such, SLang “object of interest”

attribute in a Theme defines this context for purposes of questionnaire navigation.

For example, it is the object of interest attribute that signals that questions under a

“livestock information” theme should be replicated for each agricultural

establishment that reported having livestock in a question about the establishment

production (in this case, the question has the creator attribute marked as “true” and

is linked). Those are the main components of SLang abstract syntax. Next, concrete

syntax is presented.

4.4.2.Concrete Syntax

When starting the design of SLang concrete syntax, the first question asked

was what users would expect. From conversations with domain experts, it became

clear how hard that question is. The way questionnaires are expressed vary

considerably depending on the user background in terms of IT tools. Some use

spreadsheets, other text documents. Questionnaire creation tools or a mix of all

these options, are also in order. As a result, it became very hard to get a feeling of

what would be most adequate. Still, while designing concrete syntax, effort was

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

86

made to make it as close as possible to the textual writing of a questionnaire by

using sensible defaults, consistent usage of style (colors, bold, italic, font),

indentation and conventions. Listing 1 presents the simplest survey questionnaire

that can be specified with SLang.

Survey: Hello World Survey (1)
 description: Hello! I’m a survey of one empty question
 version: 1 !! allows to control changes in the survey specification

 Objects of interest:

 alias: hello
 description: hello

 Theme: 1 - Hello theme

 Question Set:
 Question: Hello world!

Listing 1 - Hello world survey

The simplest survey must have defined properties description, a version and

a code. Next, survey main concepts, Object of Interest, Theme, Question Set and

Question, must be defined. For Objects of Interest alias and description are

mandatory. Codes are generated automatically by SLang for all identifiables.

Theme and Question have description as their mandatory attributes expressed in

listing one by the strings “Hello Theme” and “Hello world!”.

The principal concrete syntax definitions are main concepts, main concepts

properties, identifiers, types and comments. Main concepts include: Survey, Object

of Interest, Themes, Question Set, Question, Item, Trigger and Validation. Each

main concept has properties that the survey designer can specify. Identifiable

attributes are used in expressions to identify measurements but can also be shown

for main concepts. For example, the survey designer must define a survey code.

Types are used when defining survey constants or measurements. Finally,

comments allow user to document SLang models and are indicated in the code with

two exclamation points after any main concept or expression definition. Figure 19

presents the color scheme adopted by SLang.

Besides the mandatory description and version, surveys can have associated

constants. Constants are registered in a Survey attribute with a map structure. Each

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

87

constant has an alias, a type and a value. A survey can also have multiple Objects

of Interest. Each one has and alias and a description as mandatory properties. In a

survey with multiple objects of interest, one of them must be marked as default by

setting the default attribute to true. Listing 2 presents a Survey definition including

survey constants and multiple objects of interest. For constants is possible to see its

concrete syntax. The orange color indicates the constant types.

 main concepts

 main concepts properties

 measurements and constants (alias or code)

 type (measurement and constants)

 comments

 properties values, domains definition, literals, etc.

Figure 19 - Concrete syntax color conventions

Each created Survey has an associated Dictionary. Dictionaries are basically

a list of measurements. Measurement attributes vary according to their type and the

only non-mandatory attribute is alias. Measurements replicate the exact hierarchy

from domain model (section 3.4.2) including number, text, date, domain and

calculated measurements. Listing 3 presents Dictionary concrete syntax.

Surveys have four concepts that specialize NavigationItem: Theme,

QuestionSet, Question and QuestionItem. For each of those concepts, attributes with

sensible default values are kept hidden. The language designer changes those on

demand according to expected questionnaire behavior. Survey child concepts are

hierarchically organized in the following order: Theme is parent for QuestionSet,

which is parent to Question. This hierarchy is created inside a Survey through

indentation as shown in Listing 4. Attribute visibility is not shown for any of the

navigation items because it is set to its default value, which is the Boolean literal

“true”.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

88

Survey: A demographic survey (S0001)
 description: A demonstration survey

 version: 1 !! allows to control changes in the survey specification
 constants:
 min_wage: number 7.0
 reference_date: string 08/01/2019

 Objects of interest:
 alias: resident
 description: a person living in a household

 alias: household

 description: a building inhabited by people with in a known location
 default: true

Listing 2 – Survey coding example

Question items are child to Question and are questionnaire model usual place

to specify measurement consistency reinforcement through the definition of

validations and triggers. Listing 5 shows question items with different

configurations of triggers and validations. The Expression typed attribute visibility

is used to control which question items will be presented to the questionnaire

respondent. Once visible, the mandatory attribute Expression makes sure that all

these items will be answered.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

89

Dictionary for: A demographic survey (D0001)
 Measurements:

 household_proprietor
 code: V0003

 type: text
 size: 100

 resident_income

 code:V0060
 type: number
 precision: 11
 scale: 2

 household_income
 code: V0060t
 type: number
 precision: 14
 scale: 2

 rule: sum(resident_income)

Listing 3 - SLang dictionary code

Concrete syntax contemplates two action kinds: clear and input. Trigger

property expression defines when the trigger should run (trigger expression default

value is true) and measurements property specifies to which measurements trigger

actions should be applied.

Theme: Inhabitants information - T01
 object of interest: houlsehold
 instructions: Here goes instructions for a potential interviewer
 help: Here goes an explanation of this theme
 Question Set:

 Question: 1.1.1 - How many people lived in this household on {reference date}?
 Item:
 save at: number qtd_people_household

 Question: 1.1.2 - How many children with ages between zero and nine (including
newborns) lived in this household on {reference date}?

 Item:
 save at: number qtd_children_household

Listing 4 - SLang theme, question set and question hierarchy

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

90

Three kinds of validations are possible: INFO, ALERT and ERROR.

Validations have an expression that evaluates whether measurement is consistent

or not, a type indicating the level of severity of the inconsistency and a message

indicating the issue causing measurement inconsistency.

The first question item in Listing 5 shows a domain measurement definition.

Measurement domains can be edited in the associated question items or in the

dictionary.

 Question: 8.1.1 - How many sons and daughters born alive until {reference date}?
 visibility: sex == 2 && age >= 10

 mandatory: false
 Item:
 save at: domain had_children_born_alive

 1: Had Children
 2: Didn't have children
 Triggers:
 action: clear

 measurements: V0802, V0803
 expression: had_children_born_alive == 2

 Item: How many man?
 visibility: V0801 == 1

 save at: number V0802
 Triggers:
 action: input(V0802 + V0803)
 measurements: qtd_children_born_alive

 Validations:

 type: ERROR
 expression: qtd_children_born_alive > 1 && qtd_children_born_alive 30
 message: "The number of children born alive is invalid.”

 Item: How many women?

 visibility: V0801 == 1
 save at: number V0803
 Triggers:
 action: input(V0802 + V0803)
 measurements: qtd_children_born_alive

Listing 5 - Question Items with Triggers and Validations

One last aspect of SLang concrete syntax is the specification of Objects of

Interest creation. Listing 6 presents a Theme that is the creator of the inhabitants

object of interest. This is indicated by the object of interest and creator theme

attributes. As mentioned previously, all themes must have an object of interest

property which specify the context of measurements. Property creator default value

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

91

is false and is only set to true for the theme or question that is responsible for entities

(object of interest instances) creation.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

92

Theme: Inhabitants - T02
 object of interest: inhabitant

 creator: true
 Question Set:
 Question: 2.2.1 - Inhabitants information
 Item:
 description: Inhabitant name

 save at: text name
 Validations:
 type: INFO
 expression: name in set(name)
 message: "There are two inhabitants with the same name. Do they have a last

name?”

Item:
 description: What’s the day, month and year of your birthday?

Item:

 description: day
 save at: number birthday_day

 Item:
 description: month
 save at: number birthday_month

Item:

 description: year
 save at: number birthday_year

 Item:
 description: What is the relationship with the houlseholder?

 save at: domain relationship
 1: I'm the householder
 2: Partner
 3: Son
 4: Daughter

 5: Father
 Validations:
 type: ERROR
 expression: relationship == 1 && relationship in set(relationship)
 message: "A household must have just one householder"

 type: ERROR
 expression: relationship == 5 && relationship in set(relationship)
 message: "The householder already has a parent"

 Validations:
 type: ERROR
 expression: validate_date(brithday_day, birthday_month, birthday_year)
 message: "Invalid date"

Listing 6 - Object of interest creation specification at Theme

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

93

4.5. SLang model transformations

As any MDSE technology SLang was designed to raise the level of

abstraction in data collection software development. The language by itself, might

be a good exercise of modeling and language design. But the language full potential

is realized by model transformations. Two model transformations where

experimented with: questionnaire model to SQL schema (M2T) and questionnaire

model to data collection software metadata (M2T). Experiments were also made

with questionnaire model to java code (M2M), but this ended up being just a

bootstrap for code and it seemed to be of little usage from a software development

point of view considering the scope of the prototype. The implemented

transformations are briefly described here.

The relational model is based on the concept of a relation (table) as a

bidirectional structure composed of intersecting rows and columns. Columns are

attributes and rows are tuples. On top of this very simple but powerful structure, a

set of data manipulation constructs based on advanced mathematical concepts

provide the tools to manipulate datasets (CORONEL and MORRIS, 2017).

The concepts that provide the basis to the relational model and are part of the

success of relational databases is realized through the Structured Query Language

(SQL). In the scope of relational databases SQL allows the creation of database and

table structures, perform basic data management chores (add, delete, and modify)

and perform complex queries designed to transform the raw data into useful

information. It does so with minimal user effort, and its command structure and

syntax are easy to learn. Finally, it is portable and conformant basic relational

database management systems standards (CORONEL and MORRIS, 2017).

The questionnaire model to SQL schema transformation aims at creating the

proper relational scheme to store collected data through SQL7. That means finding

mappings between domain concepts and the relational model concepts expressed

using SQL. Here the focus is on collected data structure and not on metadata or

paradata structure and content.

7 In the context of this work, the model to SQL schema transformation was crafted using SQL

ANSI. It is well known that each DBMS offers flavored SQL. It is viable to tune the transformation

to contemplated specific syntax depending on the target DBMS.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

94

SLang Concept SQL instruction

Survey database

Object of Interest table

Measurement column

Validation check

Trigger trigger

Table 8 - SLang concepts to SQL instructions mapping

Survey and Object of Interest mappings are straight forward with the name

attribute of both defining the CREATE DATABASE and a CREATE TABLE

commands of SQL. Table columns are created for each measurement associated to

an object of interest with appropriated type according to the measurement type

attribute. Validations and triggers present the greatest challenge in this mapping

because of the nature of expressions. They are respectively mapped to CHECK and

CREATE TRIGGER attributes. The transformation language on MPS is straight

forward although verbose. Listing 7 presents a sample from M2T transformation

code.

For the second M2T transformation responsible to generate SInterviewer

questionnaire specification in Json format, there was the additional challenge of

deciding defaults for presentation aspects that are part of SInterviewer Json

specification. These processes involved mapping SLang concepts to SInterviewer

Json objects adjusting attribute names and imputing defaults where necessary. Also,

SInterviewer does not accounts for the concept of a survey. Its metadata files are

organized in the level of frames with one file for each theme. In that language

workbench presented a limitation since M2T transformation are written to a single

file. As such it was necessary to do some post processing on the resulting file to

allow to break it into one file per theme.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

95

Listing 7 - Sample code for M2T transformation

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

96

4.6. SLang and evaluation

DSLs are used for improving many facets of software development. Whether

and to what extent this aim is achieved is an important aspect of DSL development

and should be carefully addressed.

In the software engineering field, quality means good software products that

meet customer expectations, constraints, and requirements while aggregating value.

Despite the great variety of approaches, methods, descriptive models and tools that

have been developed for software quality, a level of consensus about what means

software quality has been reached by software practitioners. In MDSE field, quality

continues to be a great challenge, since it is not fully defined (GIRALDO,

ESPAÑA, et al., 2018). Still, the number of DSLs created are increasing every day

which begs the question: how DSLs should be evaluated?

There is a close relationship between quality and requirements. Requirements

drive quality by establishing standards against which the conformity of something

can be measured. A first issue in evaluating a DSL is related to a lack of approaches

for registering DSL requirements. There is little work on how to transform domain

analysis, which is well established as part of DSL development processes, into DSL

requirements that can be used as a guide in an evaluation. Most of the available

studies focus on general DSL requirements such as conformity, orthogonality,

supportability, integrability, extensibility, longevity, simplicity, scalability and

usability without providing an objective and general enough strategy for evaluating

those DSL aspects (KOLOVOS, PAIGE, et al., 2006).

A second relevant DSL aspect in the context of its assessment is usage context

and purpose. In cases where the goal is code related developer productivity, product

quality and the general usability of the tooling plays an important role.

Development metrics, such as development times and code static analysis

parameters, paired with developer interviews can be used to access language

usability and productivity gains (KÄRNA, TOLVANEN and KELLY, 2009).

Haugen and Parastoo (2007) propose the usage of a structured questionnaire

to measure DSL usability, adherence to domain and formalization8. Kahraman and

8 Here formalization is related to the level of precision in language semantics. Although it

might seem that formalization is always a top priority, experience shows that this is not the case.

Formality is usually seen as the usage mathematical or logical terms to describe something. In the

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

97

Bilgen (2015) propose a framework for the qualitative assessment of DSLs through

the usage of evaluators responsible for assessing DSL characteristics including:

functional suitability, usability, reliability, maintainability, productivity,

extensibility, compatibility, expressiveness, reusability and integrability. Both

approaches are relevant but are highly associated with DSLs that have been

deployed and for which the main goal is to generate code and fully functional

systems.

Software development has well established empiricism9 based principles.

There is little hope of getting complex designs right from the first time by pure

thought and ideas such as plan to throw one away, iterate and restart if necessary,

early prototyping, testing with real cases, among others are part of many software

development processes. Iterating designs with independent test problems is a well

spread good practice. You start with a set of test problems as driving problems.

Then a different set is run to see how it came out. In the long run, these examples

become the driving problems of the design providing a basis for evolutionary

growth (BROOKS JR, 1996).

As such SLang was evaluated by its capacity of modeling the one surveys

used as reference for its domain model creation and of one survey completely new

to it. The results were satisfactory with some issues on the being able to map all

survey expressions. Those surveys were successfully run on SInterviewer., which

is explained in the next Chapter.

universe of DSL, code generation schemes and executable models can represent formalization

(HAUGEN and PARASTOO, 2007).
9 Empiricism in the philosophy of science emphasizes evidence, especially as discovered in

experiments. It is a fundamental part of the scientific method that all hypotheses and theories must

be tested against observations of the natural world rather than resting solely on a priori reasoning,

intuition, or revelation (WIKIPEDIA, 2019).

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

98

5
SInterviewer: A SLang use case

MDE approach claims that the use of modeling languages helps specify

models in a certain level of abstraction to support the development of software

applications. A “software application (or software product)” is a system composed

of a nontrivial integration of software platforms, artefacts generated through model-

to-text transformations, artefacts directly written by developers, and eventually

models directly executable in the context of a particular software platform”.

Software platforms mean an integrated set of computational elements that enable

the development and execution of a class of software products (SILVA, 2015).

SInterviewer is a software application developed to allow data collection for

questionnaire-based surveys on the Android platform. Its architecture is an

evolution of data collection software developed for five distinct IBGE surveys

including the 2017 Agricultural Census and the 2020 Demographic Census. One of

the main challenges faced when developing data collection software for large scale

statistical operations is the constant change in requirements. Questionnaires are

continuously tested which results in changing requirements. Questionnaire

specification changes management is challenging even with modern tools like

distributed version control and concurrent document editing.

The next sections describe SInterviewer characteristics and main

functionalities. It also discusses the improvements by the usage of SLang as

reference for questionnaire specification. Section 5.1 presents SInterviewer making

considerations about its main features with an emphasis on questionnaire

navigation, persistence and expressions parsing followed by the description of

SInterviewer architecture. Section 5.2 presents the usage of SLang as a source of

questionnaire specification for SInterviewer and discusses the benefits of using

SLang models to generate SInterviewer questionnaire metadata files.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

99

5.1. SInterviewer overview

SInterviewer is data intensive mobile application built on top of the android

platform. Its main purpose is the collection of questionnaire data and paradata. As

mentioned in the chapter introduction, SInterviewer uses questionnaire metadata

registered in Json format as the basis for delivering its features. Whenever a

questionnaire is being answered, questions are shown one by one. Screen one in

Figure 20 shows a simple open text question. Second screen presents questionnaire

options: show questions tree (which enables to jump to any already answered

question), clear current question answers, register an observation about the

interview of close the questionnaire. Third screen presents the visual aspect used

for validations, in this case an error alert resulting from trying to go to the next

question with a mandatory field empty. In terms of question types, SInterviewer

enables the usage of open text questions (numbers, text of dates), single choice

questions (radio buttons or combo boxes) and multiple choices (checkboxes).

Figure 20 - SInterviewer question features

Entity editors allow dynamic creation of objects of interest. First screen on

Figure 21 shows the entity manager that allows creating, editing and deleting

entities of the type inhabitant. Second screen presents for inhabitant creating/editing

form and third screen shows an inhabitant question.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

100

Figure 21 - Entity editor and questions

The close questionnaire function makes a final validation of the questionnaire

presenting either the information that the questionnaire has been successfully

answered or a list of pending questions. It is at questionnaire closing that

questionnaire status is registered according to the status of its navigation items

(themes, question sets, questions and question items).

SInterviewer model reflects clearly the structural domain model and is

composed of three distinct groups of entities: questionnaire metadata, interview

metadata and paradata related entities. Questionnaire metadata is not persisted and

is read from information structured in Json files. Interview data is entered by the

user as questionnaire is answered and persisted using conventions based on the

measurements and dictionary specification. Paradata is partially persisted through

the log entity and partially persisted using the same conventions as the interview

model.

SInterviewer functionalities are based on a four layers architecture built on

top of Android SDK following a flavor of the MVC architectural pattern. The top

layer is responsible for presentation and governs all UI aspects. Next, the controller

layer uses services layer to provide business rules and access to deserialization,

expressions parsing and data persistence. Figure 22 presents a schematic of

SInterviewer architecture.

Deserialization of questionnaire metadata is triggered once, when the

application is started and is used through the services layer to control questionnaire

navigation and answers persistence as well as general application functionality such

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

101

as closing questionnaire associated processes and interview observations

registering.

SInterview supports two data models: relational data model (built on top of

sqlite3) and document-based data model (built on top of Couchbase Lite). The

desired data model is selected by configuration that must be made before building

the application for distribution.

Figure 22 - SInterviewer architecture

Given the fact that questionnaires change constantly, the persistence model is

not based on a direct mapping between objects with their attributes and a database

model. As a matter of fact, the option was made not to code answers into object

attributes and, instead, use convention for the persistence layer. For example,

relational persistence layer implementation saves answers by finding a table and

column given the entity name and the question item code respectively. This decision

plays a big role in architectural aspects and is the reason why SInterviewer do not

use the recommended Android architecture which is based on the usage of

ViewModels (GOOGLE DEVELOPERS, 2019).

One of the cornerstones of a questionnaire is the possibility to use Boolean

and arithmetic expressions as means to define questions navigation, answers

validation and for creating derived answers based on previous collected data.

SInterviewer supports the concepts of expressions through the usage of an

expression’s parser module. The expression’s parser is a top down parser and is

able to process Boolean and arithmetic expressions.

As previously explained, SInterviewer implements a model for questionnaires

that is instantiated when the application is first started and questionnaire json files

are deserialized. This model includes classes for some of SLang concepts such as

theme, question, validation, triggers and expressions. It also includes interview and

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

102

answer entities with their associated classes. The combination of interview and

questionnaire related data define questionnaire navigation. Figure 23 presents an

overview of how questionnaire navigation flows after a question is answered and

the user presses the next button.

Figure 23 - SInterviewer questionnaire navigation activities

Questionnaire status control is derived from question status and is updated

when questionnaire is closed. Question status is updated after validations are

executed. A question validation is executed on the navigation flow and when the

user closes the questionnaire.

SInterviewer supports two ways to extract data: export to CSV files and

export questionnaire in a document in Json format. Those formats can be used to

import questionnaire to databases or be used directly by data analysis tools.

5.2. SInterviewer and SLang

SInterviewer already has what could be seen as well-defined model, which is

the Json notation used to store questionnaire metadata which works well as far as

the data collection application is concerned. Then why introduce another language?

What would be the role of SLang in the usage of a tool such as SInterviewer? What

are the benefits and what are the disadvantages?

Before analyzing the benefits from adopting SLang as the modeling tool for

questionnaires in the context of SInterviewer, it is important to clearly understand

the role questionnaire Json notation plays in this scenario.

Before the current implementation used in SInterviewer, data collection

software evolved slowly starting with hardcoded metadata, passing by the usage of

proprietary file formats to store metadata and going all the way up to the usage of

json questionnaire metadata. Each step in this evolution brought with itself

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

103

productivity and quality increases. Since Json notation has been adopted, five

different surveys were implemented with a diminished time to market. Still, each

of the five implemented surveys have distinct questionnaire json notations. Two

factors push development teams to make changes in the notation: first, the notation

mixes questionnaire model and questionnaire presentation. Second, there is not a

central environment to manage the notation specification.

The first issue has not been addressed and remains an issue on SInterviewer.

In what concerns the second, there has been an attempt to create a questionnaire

editor. Although, the editor works well, evaluations conducted with users have

shown the editor is hard to use and the way questionnaire concepts are presented is

distant from the way people currently specify and document survey questionnaires

and even developers avoid using the editor given how hard it is to use it to maintain

the questionnaire. The next natural step on this evolution would work on improving

json questionnaire notation, its management and editor usability.

The step in adopting a json notation to represent questionnaire is a clear step

towards a model-driven questionnaire. Given the problems that arose, why not

investigate the possibility the usage of a DSL with all it entails (IDE, debugging,

syntax close to domain concepts, model transformations, etc.) as a tool to create

questionnaire models that can be transformed into whatever is needed (other

models, code, documentation, etc.). In that context, Language Workbenches are

especially attractive, since they facilitate both defining a language and providing

the tools to use the language.

Among the potential gains the adoption of a DSL offers in the specific case

of SInterviewer are:

 Centralized and automated questionnaire requirements management.

There are two views of questionnaire management. First there is DSL

language evolution to support new concepts and relations whenever

deemed necessary by language developers. That should be done

guaranteeing backward compatibility. Second there is the management of

questionnaire models. Questionnaire model changes can be tracked and

compatibility between data collection questionnaire and specified

questionnaire will be guaranteed by model transformations. As such

developers no longer work with questionnaire metadata. Also, models and

models components can be reused.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

104

 Systems integration. Here model transformation plays a central role. The

most basic example is the integration data collection system and

microdata storage. A simple model transformation converts SLang

questionnaire model to database schema represented in SQL. Another

example is metadata management systems. Again, a model

transformation is enough to convert questionnaire metadata to the right

format survey metadata systems use.

 Automate relational schema generation for data model. That is done by

using the M2T transformation that enables to generate both Json and

relational schemas for data collection storages.

Those might look like small gains, but as a matter of fact each of those items

brings great productivity gains when looking at large scale survey operations.

Having a centralized and automated questionnaire requirements management that

pretty much eliminates the need of paper documentation on questionnaire

specification has the potential to eliminate most of the communication issues that

generate bugs that go from wrong question texts to measurement type errors and

missing question items.

SLang as a prototype is limited since it does not give its users control over

questionnaire presentation aspects such as what UI components to use, visual

identity and user interaction patterns. But those issues could potentially be

approached by adding a questionnaire presentation model in the workflow displayed in

Figure 8. Modeling questionnaire presentation could potentially be

approached by the creation of a DSL sharing the same environment used for the

development of SLang.

Systems integration in the case of SInteviewer are closely related to

automated relational schema generation for data model. Keeping the data under the

mobile device brings little benefits for a researcher. Currently the usual approach is

to have a relational database to which data collected with SInterviewer can be

uploaded. Again, having the model eliminates difficulties of compatibilization

between the relation schema from the data storage to data model used by

SInterviewer. Being able to replicate constraints on the relational storage, adds an

extra layer quality to data collection by reinforcing consistency.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

105

The experience with SLang and SInterviewer was considered successful, but

is it worth further developing SLang? Are the benefits big enough to account for

costs? In the Conclusions session of this work, summarizes what was learned from

this exploratory experiment, pointing to what could be the next steps considering

the survey process as a role.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

106

6
Conclusions

This dissertation presented a practical case of DSL development in the

domain of questionnaire-based surveys. MDE and DSL development has evolved a

lot in recent years, especially in what concerns tools for DSL creation and usage.

Although creating a DSLs it is not a novel idea, the surveys domain is still

starting to realize the power of modeling languages as a tool to tame complexity

(SDMX e DDI are both releasing transformation languages to facilitate metadata

usage). Through the work done in this research, it was possible to form a clear view

of what MDSE entails and of the potential for using DSLs as an approach for

delivering MDSE in a data intensive specific domain.

The process of creating a DSL for questionnaire modeling was a challenging

task given a lack of experience with computer language design. In this process,

domain modeling provided a tool for domain exploration allowing a clear view of

the concepts, their interrelations and frequency. Domain modeling is not new and

there are many methodologies available, but none targeted at creating DSLs. The

development of a specific domain modeling methodology with focus on DSL

creating can, potentially, provide better focus in terms of the requirements for a

creating DSL.

A second aspect with great influence on the DSL creation process was the

usage of a language workbench. The language workbench provided the structure

necessary to explore computer language design aspects with a clear conceptual

frame in which language design and implementation had a set of premises that

helped making choices. Also, the IDE (Integrated Development Environment)

derived from the Language Workbench provided a tool for DSL models creation

eliminating a significant amount of work in modeling tools development and

diminishing the time taken to have a viable prototype.

The prototyped DSL, SLang, performed well and was evaluated by the

creation of questionnaire models for some of the survey specifications collected

during the analysis phase and one new survey. Although the results were acceptable,

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

107

there were shortcomings in using the current SLang concrete syntax. The

questionnaire specification for the survey that was not used for domain analysis

contained intricate validations rules using operations on groups of entities that could

not be modeled using SLang. Also, for this questionnaire specification, validations

have actions associated with user feedback upon answering a question. This last

aspect falls into a gray area for SLang, since it is a transversal questionnaire

specification that is closely linked with UI implementation not covered by SLang.

The need of improvements was also detected as SLang should allow a questionnaire

designer to specify interview instructions and have more flexibility on the usage of

Expressions. All these issues can be further investigated if the option is made to

start deploying SLang as a tool on an industrial scale.

The practical example in which SLang was used was quite simple, but it

showed the potential for the usage of DSLs to solve practical problems, including

difficult ones such as communication between domain experts and software

developers. SInterviewer is still in preliminary tests and there is a long way before

it is a production ready tool. In that sense, SLang also needs to evolve since, in its

current state, it doesn’t support questionnaire presentation specification. Still,

overall, as prototypes both SLang and SInterviewer allowed to evaluate DSL usage

on survey questionnaire specification domain which is a key step before advancing

on the idea of deploying a DSL based tool for large scale surveys.

This research didn’t cover language usability tests. Although there were

informal interactions with domain experts during SLang development, that does not

account for a large enough sample to validate SLang from a domain expert point of

view. That kind of test seems to be critical before moving forward with an industry

scale questionnaire modeling DSL.

Considering the full picture of this research, the following topics should be

addressed moving forward: to formally evaluate SLang usability; to trace a

language evolution plan that can help deal with variabilities in questionnaire

specification practices; to investigate the development of a DSLs for questionnaire

presentation modeling and make SLang executable to facilitate the questionnaire

models creation. All of these issues can bring important contributions to MDSE,

DSL development and survey methodology knowledge.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

108

7
Bibliography

ARANGO, G. A brief introductino to domain analysis. SAC '94

Proceedings of the 1994 ACM Symposium on Applied Computing. Phoenix: ACM.

1994. p. 42-46.

BÈZIVIN, J. Model Driven Engineering: An Emerging Technical Space. In:

LÄMMEL, R.; SARAIVA, J.; VISSER, J. Generative and Transformational

Techniques in Software Engineering. Braga: Springer, 2005. p. 36-64.

BÈZIVIN, J.; GERBÉ, O. Towards a Precise Definition of the OMG/MDA

Framework. IEEE International Conference on Automated Software Engineering.

[S.l.]: IEEE. 2001. p. 273-280.

BEZIVIN, J. In search of a basic principle for model driven engineering.

Novatica/Upgrade, v. 5, n. 2, p. 21-24, 2004.

BORODIN, A. V.; ZAVYALOVA, . V. Ontology-Based Semantic Design

of Survey Questionnaires. Proceeding of the 19th conference of open inovations

association (FRUCT). Jyvaskyla: IEEE. 2016. p. 10-15.

BROOKS JR, F. P. Language design as design. In: BERGIN JR., T. J.;

GIBSON JR., R. G. History of programming languages. New York: ACM Press,

v. II, 1996. p. 4 - 15.

BURDEN, H.; HELDAL, R.; WHITTLE, J. Comparing and Contrasting

Model-Driven Engineering at Three Large Companies. Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement. Torino: ACM. 2014.

CAMPAGNE, F. The MPS Language Workbench. Third Edition. ed. [S.l.]:

[s.n.], 2016.

CORONEL, C.; MORRIS, S. Database systems: design, implementation and

management. 13th. ed. [S.l.]: Cengage, 2017.

COTTON, F.; GILLMAN, D. . Modeling the Statistical Process with

Linked Metadata. Proccedings of the 3rd International Workshop in Semantic

Statistics. [S.l.]: [s.n.]. 2015.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

109

COUPER, M. P. Measuring survey quality in a CASIC environment.

Processdings ot the Survey Research Methods Section. [S.l.]: American Statistical

Association. 1998. p. 41-49.

COUPER, M. P. Technology trends in survey data collection. social Science

Computer Review, v. 23, n. 4, 2005.

CZECH, G.; MOSER, M.; PICHLER, J. Best practices for domain-specific

modeling. A systematic mapping study. 44th Euromicro Conference on Software

Engineering and Advanced Applications. Prague: IEEE. 2018. p. 137-145.

DATA DOCUMENTATION INNITIATIVE ALLIANCE. DDI Alliance

Homepage. DDI Alliance, 2019. Available at: <https://.ddialliance.org>. Accessed

on June 20, 2019.

DEURSEN, A. V.; KLINT, P.; VISSER, J. Domain-specific languages: an

annotated bibliography. ACM SIGPLAN Notices, New York, v. 35, n. 6, p. 26-36,

June 2000.

ERDWEG, S. et al. Evaluating and comparing language workbenches:

Existing results and benchmarks for the future. Computer Languages, Systems &

Structures, v. 44, n. A, p. 24-47, 2015.

EVANS, E. Domain-driven design: tackling complexity in the heart of

doftware. [S.l.]: Addison Wesley, 2003.

FALBO, R. D. A.; GUIZZARDI, G.; DUARTE, K. C. An Ontological

Approach to Domain Engineering. Processings of the 14th International

Conference on Software Engineering and Knowledge Engineering (SEKE'02).

[S.l.]: ACM. 2002. p. 351-358.

FAVRÈ, J.-M.; NGUYEN, T. Towards a Megamodel to Model Software

Evolution Through Transformations. Eletronic Notes in Theoretical Computer

Science, 127, n. 3, 2005. 59-74.

FOWLER, M. Language Workbech. Martin Fowler, 2005. Available at:

<http://martinfowler.com/articles/languageWorkbench.html>. Accessed on August

1st, 2019.

FOWLER, M. et al. Patterns of enterprise application architecture. [S.l.]:

Addison-Wesley, 2003.

FOWLER, M.; PARSONS, R. Domain-specific languages. [S.l.]: Addison-

Wesley, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

110

FOWLER; MARTIN. A pedagogical framework for domain-specific

languages. IEEE Software, v. 26, n. 4, p. 13-14, July/August 2009.

FRAKES, .; PRIETO-DIAZ, R.; FOX, C. DARE: Domain analysis and reuse

environment. Annals of Software Engineering, v. 5, n. 1, p. 125-141, January

1998.

FRANK, U. Some guidelines for the conception of domain-specific

modeling languages. Proceedings of the 4th International Workshop on Enterprise

Modelling and Information Systems Architectures. Hamburg, Germany: [s.n.].

2011. p. 93-106.

GIRALDO, D. et al. considerations about quality in model-driven

engineering: current state and challenges. Software Quality Journal, v. 26, p. 685-

750, 2018.

GOOGLE DEVELOPERS. Guide to app architecture. Anroid developers,

2019. Available at: <https://developer.android.com/jetpack/docs/guide>. Accessed

on August 27, 2019.

GROVES, R. M. Three eras of survey research. Public Opinion Quarterly,

v. 75, n. 5, p. 861-871, 2011.

GROVES, R. M. et al. Survey Methodology. 2nd. ed. New Jersey: John

Wiley & Sons, 2009.

GSIM. GSIM and standards. UNECE Statiswiki, 2019. Available at:

<https://statswiki.unece.org/display/gsim/GSIM+and+standards>. Accessed on

June 1st, 2019.

HAUGEN, O.; PARASTOO, M. A multi-dimentional framework for

characterizing domain-specific languages. Proceeding of the 7th OOPSLA

Workshop on Domain Specific Modeling. [S.l.]: [s.n.]. 2007.

HEERING, J.; MERNIK, M. Domain-Specific Languages in Perspective.

[S.l.]: [s.n.], 2007.

HUTCHINSON, J.; WHITTLE, J.; ROUNCEFIELD, M. Model-driven

engineering practices in industry: Social, organizational and managerial factors that

lead to success or failure. Science of Computer Programming, v. 89, n. B, p. 144-

161, September 2014.

IBGE. Census of Agriculture. Brazilian Institute of Geography and

Statistics, 2017. Available at:

<https://.ibge.gov.br/en/statistics/economic/agriculture-forestry-and-

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

111

fishing/21929-2017-2017-censo-agropecuario-en.html?=&t=o-que-e>. Accessed

on April 5th, 2019.

JACKSON, E. K.; SZTIPANOVITS, J. Towards a formal foundation for

domain specific modeling languages. Proccedings of the 6th ACM & IEEE

International Conference on Embedded Software. [S.l.]: ACM. 2006.

JATAIN, A.; GOEL, S. Comparison of domain analysis methods in software

reuse. International Journal of Information Technology and Knowledge

Management, v. 2, n. 2, p. 347-352, December 2009.

KÜHNE, T. Matters of (meta-) modeling. Software & Systems Modeling,

v. 5, n. 4, p. 369-385, December 2006.

KAHLAOUI, A.; ABRAN, A.; LEFEBVRE, É. Dsml success factors and

their assessment criteria. Metrics News, v. 13, n. 1, p. 43-51, 2008.

KAHRAMAN, G.; BILGEN, S. A framework for qualitative assessment of

domain-specific languages. Software and Systems Modeling, v. 14, n. 4, p. 1505–

1526, October 2015.

KANG, K. C. et al. Feature-Oriented Domain Analysis (FODA).

Pittsburgh: Software Engineering Institute Carnegie Mellon University, 1990.

KARGE, R. Integrated metadata-systems within statistical offices. Tenth

International Conference on Scientific and Statistical Database Management. Capri:

[s.n.]. 1998. p. 216-219.

KARSAI, G. et al. Design guidelines for domain specific languages.

Proceedings of the 9th OOPSLA workshop on domain-specific modeling. Florida:

[s.n.]. 2009.

KELLY, S.; TOLVANEN, J.-P. Domain-specific modeling: enabling full

code generation. New Jersey: John Wiley & Sons, 2008.

KÄRNA, J.; TOLVANEN, J.-P.; KELLY, S. Evaluating the use of domain-

specific modeling in practice. Proceedings of DSM09. [S.l.]: [s.n.]. 2009.

KIM, C. H.; GRUNDY, J.; HOSKING, J. A suit of visual languages for

model-driven development of statistical surveys and services. Journal of Visual

Languages and Computing, Orlando, 26, n. 99, 2015.

KOLOVOS, D. S. et al. Requirements for domain-specific languages.

Proceedings of the First ECOOP Workshop on Domain-Specific Program

Development. Nates: [s.n.]. 2006.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

112

LANDIN, P. J. The next 700 programming languages. Communications of

the ACM, New York, v. 9, n. 3, p. 157-166, March 1966.

LISBOA, L. B. et al. A systematic review of domain analysis tools.

Information and Software Technology, v. 52, n. 1, p. 1-13, 2010.

MERNIK, M.; HEERING, J.; SLOANE, A. M. When and how to develop

domain-specific languages. ACM Computing Surveys, New York, v. 37, n. 4, p.

316-344, December 2005.

MOHAGHEGHI, P. et al. An empirical study of the state of the practiceand

acceptance of model-driven engineering in four industrial cases. Empirical

Software Engineering, v. 18, n. 1, p. 89-116, February 2013.

MOHAGHEGHI, P.; DEHLEN, V. Where is the proof? - A review of

experiences from applyting MDE in industry. European Conference on Model

Driven Architecture - Foundations and Applications. [S.l.]: Springer. 2008. p. 432-

443.

MOORE, D. S.; MCCABE, G. P.; CRAIG, B. A. Introduction to the

practice of statistics. New York: W. H. Freeman and Company, 2009.

MUSSBACHER, G. et al. The relevance of Model-driven engineering

thirty years from now. 17th International Conference ACM/IEEE - Conference on

Model Driven Engineering Languages and Systems (MODELS). [S.l.]: [s.n.]. 2014.

NASCIMENTO, L. M. D. et al. A systematic mapping study on domain-

specific languages. The Seventh International Conference on Software

Engineering Advances (ICSEA 2012). Lisboa: IARIA XPS Press. 2012. p. 179-

187.

NEIGHBORS, J. M. Software construction using components. Irvine:

Department of Information and Computer Science University of California, 1980.

OPEN DATA KIT. Open Data Kit Home Page. Open Data Kit, 2019.

Available at: <https://opendatakit.org>. Accessed on May 17, 2019.

PIETRO-DÍAZ, R. Domain analysis: an introduction. Software Engineering

Notes, v. 15, n. 2, p. 47-54, April 1990.

QUALTRICS. Qualtrics Home Page. Qualtrics, 2019. Available at:

<https://.qualtrics.com>. Accessed on May 16, 2019.

QUESTION. English Oxford Dictionaries. Available at:

<https://en.oxforddictionaries.com/definition/question>. Accessed on April 11,

2019.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

113

QUESTIONNAIRE. English Oxford Dictionaries. Available at:

<https://en.oxforddictionaries.com/definition/questionnaire>. Accessed on April

11, 2019.

SARIS, W. E.; GALHOFER, I. N. Design, Evaluation, and Analysis of

Questionaires for Survey Research. 2nd Edition. ed. Hoboken: John Wiley and

Sons, Inc., 2014.

SEIDEWITZ, E. What models mean. IEEE Software, v. 20, n. 5, p. 26-32,

2003.

SELIC, B. The pragmatics of model-driven development, v. 20, n. 5, p. 19-

25, 2003.

SENDAL, S.; KOZACSYNSKI, W. Model Transformation: The Heart and

Soul of Model-Driven Software Development. IEEE Software, v. 20, n. 5, p. 42-

45, September 2003.

SILVA, A. R. Model-driven engineering: A survey supported by the unified

conceptual model. Computer Languages, Systems & Structures, v. 43, p. 139-

155, October 2015.

SIMOS, M. A. Organization domain modeling (ODM: formalizing the core

domain modeling life cycle. SSR'95: Proceeding of the 1995 Symposium on

Software Reusability. [S.l.]: ACM. 1995. p. 196-205.

SPINELLIS, D. Notable design patterns for domain-specific languages. The

Journal of Systems and Software, v. 56, p. 91-99, 2001.

STATISTICAL DATA AND METADATA EXCHANGE. SDMX. SMDX

Community, 2019. Available at: <https://sdmx.org/>. Accessed on June 1st, 2019.

STATISTICS NETHERLANDS. Blaise Home Page. Blaise, 2019. Available

at: <https://www.blaise.com>. Accessed on June 1st, 2019.

STREMBECK, M.; ZDUN, U. An apporach for the systematic development

of domain-specific languages. Software: practice and experience, v. 39, n. 15, p.

1253-1292, September 2009.

SURVEYMONKEY. SurveyMonkey Home Page. SurveyMonkey, 2019.

Available at: <https://pt.surveymonkey.com/>. Accessed on May 15, 2019.

THIBAULT, S. A.; MARLET, R.; CONSEL, C. Domain-specific languages:

from design to implementation application to video device drivers generation.

Transactions on software engineering, v. 25, n. 3, p. 363-377, May/June 1999.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

114

TRACZ, W. DSSA (domain-Specifc Software Architecture): pedagogical

example. ACM SIGSOFT Software Engineering Notes, v. 20, n. 3, p. 49-61, July

1995.

UNECE. GSIM Communication Paper. Statswiki, 2019. Available at:

<https://statswiki.unece.org/display/gsim/GSIM+Communication+Paper>.

Accessed on June 17, 2019.

UNITED STATED CENSUS BUREAU. Census and Survey Processing

System. United States Census Bureau Website, 16 may 2019. Available at:

<https://www.census.gov/data/software/cspro.html>. Accessed on May 16, 2019.

UNITED STATES GENERAL ACCOUNTING OFFICE. Developing and

Using Questionnaires. [S.l.]. 1993. (GAO/PEMD-10.1.7).

VARDAKI, M.; PAPAGEORGIOU, H. An integrated metadata model for

statistical data collection and processing. 16th International Conference on

Scientific and Statistical Database Management. [S.l.]: IEEE. 2004.

VASUDEVAN, N. Comparative study of DSL tools. Eletronic Notes in

Theoretical Computer Science, v. 264, n. 5, p. 103-212, 2011.

VOELTER, M. et al. DSL Engineering. [S.l.]: CreateSpace Independent

Publishing Platform, 2013.

WASILEWSKI, M.; HASSELBRING, W.; NOWOTKA, D. Defining

requirements on domain-specific languages in model-driven software

engineering of safety-critical systems. Software Engineering 2013

Workshopband. [S.l.]: Gesellschaft für Informatik. 2013. p. 467-482.

WEGELER, T. et al. Evaluating the Benefits of Using Domain-Specific

Modeling languages - an experience report. Proceedings of the 2013 ACM

workshop on domain-specific modeling. Indianapolis: ACM. 2013. p. 7-12.

WEISS, D. M.; LAI, C. T. R. Software Product-Line Engineering: A

family-Based Software development Process. [S.l.]: Addison-Wesley, 1999.

WHITTLE, J.; HUTCHINGSON, J.; ROUCEFIELD, M. The state of

practive in model-driven engineering. IEEE Software, v. 31, n. 1, p. 79-85, May-

June 2014.

WIKIPEDIA. Data Documentation Initiative. Wikipedia, 2019. Available at:

<Data Documentation Initiative>. Accessed on June 13, 2019.

WIKIPEDIA. Empiricism. Wikipedia, 2019. Available at:

<https://en.wikipedia.org/wiki/Empiricism>. Accessed on August 18, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

115

WIKIPEDIA. Model transformation. Wikipedia, 2019. Available at:

<https://en.wikipedia.org/wiki/Model_transformation>. Accessed on June 6, 2019.

WIKIPEDIA. SDMX. Wikipedia, 2019. Available at:

<https://en.wikipedia.org/wiki/SDMX>. Accessed on June 13, 2019.

ZOHO. ZoHo Home Page. ZoHo, 2019. Available at:

<https://www.zoho.com/survey/>. Accessed on May 16, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

116

Appendix I

Slang model for the 2015 PeNSE Survey school questionnaire.

Survey: National Student Health Survey (PENSE2015)
 description:
 version: 1 !! allows to control changes in the survey specification
 constants:
 min_wage: number 778
 empty_value: number 0
 skipped_value: number 9

 Objects of interest:
 alias: school

 school_id: number
 school_type: number
 school_uf: number
 school_city: number
 school_type: number
 school_situation: number

 school_administration: number
 school_public_administration_scope: number

 Theme: School information – T01
 Question Set:
 Question: 1.1.1 - School information
 Item:
 description: Visit date:
 save at: date visit_date

Item:
 description: School:
 save at: domain school_id
 read from: schools

 Theme: School environment – T02

description: The following questions regard the school environment and should be
answered by the school principal, coordinator or the person responsible for the school.

 Question Set:
 Question: 2.1.1 – What is your role at the school?
 Item:
 save at: domain interviewee_role
 1: Principal
 2: Coordinator
 3: Administrator
 4: Secretary
 5: Teacher
 6: Other

Question: 2.1.2 – What are the school shifts?
 Item:

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

117

 save at: domain school_shifts
 1: Morning
 2: Intermediate (part morning, part afternoon)
 3: Afternoon
 4: Evening
Question: 2.1.3 – Does the school provides services full-time?
 Item:
 save at: domain school_fulltime
 1: Yes
 2: No
Question: 2.1.4 – Is the school a boarding school?
 Item:
 save at: domain school_boarding
 1: Yes
 2: No
Question: 2.1.5 – Which levels does the school supports?
 Item:
 save at: domain school_levels
 1: Preschool
 2: K-12
 3: High school
 4: Special programs
Question: 2.1.6 – What is the number of enrroled students?
 Item:
 save at: domain school_student_qtd
 1: Up to 50 students
 2: From 51 to 100 students
 3: From 101 to 500 students
 4: From 501 to 1000 students
 5: More than 1000 students
Question: 2.1.7 – What is the total number of classrooms?
 Item:
 save at: domain school_room_qtd
 1: Up to 10 classrooms
 2: From 11 to 20 classrooms
 3: From 21 to 30 classrooms
 4: From 31 to 40 classrooms

 5: From 41 to 50 classrooms
 6: More than 51 classrooms

Question: 2.1.8 – How much is school tuition at the K-12 9th grade?
 information: Minimum wage in 01-01-2015 = R$ {min_wage},00
 visibility: school_administration == 2
 Item:
 save at: domain school_tuition
 1: Up to R$ 394,00
 2: More than R$ 394,00 up to R$ 788,00
 3: More than R$ 788,00 up to R$ 1.576,00
 4: More than R$ 1.576,00 up to R$ 3.152,00

 5: More than R$ 3.152,00 up to R$ 6.304,00
 6: More than R$ 6.304,00

Question: 2.1.9 – Does the school has a library that is in condition of use?
 Item:
 save at: domain school_library
 1: Yes
 2: No
 3: There is no library

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

118

Question: 2.1.10 – Does the school has a room or computer lab that is in condition
of use?
 Item:
 save at: domain school_computer_lab
 1: Yes
 2: No
 3: There is no room or computer lab
Question: 2.1.11 – How many school computers (desktops, laptops, notebooks,
netbooks, tablets) in conditions of use are available for the students in classrooms
or in specific computer rooms?
 Item:
 save at: domain school_computer_qtd
 1: Up to 10 computers
 2: From 11 to 20 computers
 3: From 21 to 30 computers
 4: From 41 to 50 computers
 5: More than 50 computers
Question: 2.1.12 – Does students can access the internet from school computers?
 Item:
 save at: domain school_internet
 1: Yes
 2: No
Question: 2.1.13 – Does the school has multimedia/communications room in
conditions of use (Examples: television, videocassette, DVD, projectors, etc.)?
 Item:
 save at: domain school_multimedia
 1: Yes
 2: No
 3: There is no multimedia/communications room
Question: 2.1.14 – Does the school has a school council?
 Item:
 save at: domain school_council
 1: Yes
 2: No
Question: 2.1.15 – How frequently does the school council holds meetings?
 visibility: school_council == 1
 Item:
 save at: domain school_council_freq
 1: There are no scheduled meetings
 2: From 1 to 3 times a year
 3: From 4 to 6 times a year
 4: From 7 to 9 times a year
 5: From 10 to 12 times a year
 6: More than 12 times a year
Question: 2.1.16 – Does the school remains open during weekends so that the
community can use its installations?
 Item:
 save at: domain school_weekend_activities
 1: Yes
 2: No
Question: 2.1.17 – Are the activities developed during weekends shared with
planned with the community participation?
 visibility: school_weekend_activities == 1
 Item:
 save at: domain school_weekend_activities_planning
 1: Yes
 2: No

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

119

Theme: Sports practice – T03

Question Set:
 Question: 3.1.1 – Does the school has sports quarts in conditions of use?
 Item:

save at: domain school_sports_quart
1: Yes

 2: No
 3: There is no sports quart
 Question: 3.1.2 – How many sports quarts, in conditions of use, does the school has?

 visibility: school_sports_quart == 1
 Item:

save at: domain school_sports_quart_qtd
1: 1

 2: 2
 3: 3 or more
 Question: 3.1.3 – How many of the sport quarts, in conditions of use, are sheltered?

 visibility: school_sports_quart == 1
 Item:

save at: domain school_sports_quart_sheltered
1: None
2: 1

 3: 2
 4: 3 or more
 5: All
 Question: 3.1.4 – Does the school has athletics track in conditions of use?
 Item:

save at: domain school_sports_athletics_track
1: Yes

 2: No
 3: There is no athletics track
 Question: 3.1.5 – Does the school has pools in conditions of use?
 Item:

save at: domain school_sports_pool
1: Yes

 2: No
 3: There is no pool

Question: 3.1.6 – Is the school patio used for instructor lead regular physical
activities?

 Item:
save at: domain school_sports_patio
1: Yes

 2: No
 3: There is patio
 Question: 3.1.7 – Does the school has sports and games material in conditions of use?
 Item:

save at: domain school_sports_material
1: Yes

 2: No
 3: There is no sports and game material

Question: 3.1.8 – Does the school has locker rooms in conditions of use for the
students?

 Item:
save at: domain school_sports_locker_rooms
1: Yes

 2: No
 3: There is no locker room

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

120

 Question: 3.1.9 – Does the school has separate locker rooms for boys and girls?
 visibility: school_sports_locker_rooms == 1

 Item:
save at: domain school_sports_locker_rooms_separate
1: Yes
2: No

 3: There are no separate locker rooms
 Question: 3.1.10 – Does the school offers sports activities outside the regular hours?
 Item:

save at: domain school_sports_activities
1: Yes
2: No

 3: There are no separate locker rooms
 Question: 3.1.11 – Does the school takes part in competitions between schools?
 Item:

save at: domain school_sports_competitions
1: Yes
2: No

 Question: 3.1.12 – Does the school organized competitions between classes of shifts?
 Item:

save at: domain school_sports_competitions_internal
1: Yes
2: No

Theme: Accessibility – T04

Question Set:
Question: 4.1.1 – Does the school has students with deficiency or global
development deficiency?

 Item:
save at: domain school_accessibility_deficiency
1: Yes

 2: No
Question: 4.1.2 – What type(s) of deficiency?

 visibility: school_accessibility_deficiency == 1
 Item:

description: Intellectual deficiency
save at: number school_accessibility_deficiency_intelectual

 Item:
description: Autism spectrum disorder
save at: number school_accessibility_deficiency_autism

 Item:
description: Mental and behavioral disorders
save at: number school_accessibility_deficiency_mental

 Item:
description: Physical deficiency
save at: number school_accessibility_deficiency_physical

 Item:
description: Hearing deficiency
save at: number school_accessibility_deficiency_hearing

 Item:
description: Visual deficiency
save at: number school_accessibility_deficiency_visual

 Item:
description: Multiple deficiencies
save at: number school_accessibility_deficiency_multiple

 Item:
description: Others

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

121

save at: number school_accessibility_deficiency_other
Question: 4.1.3 – Does the school offers physical activities adapted for students with
disabilities?

 visibility: school_acessibility_deficiency == 1
 Item:

save at: domain school_accessibility_sports
1: Yes
2: No

Question: 4.1.4 – Does school infrastructure provides accessibility for students with
disabilities?

 visibility: school_acessibility_deficiency == 1
 Item:

save at: domain school_accessibility_infrastructure
1: Yes
2: No

Question: 4.1.5 – What kind of infrastructure aspects are available to guarantee
accessibility for students with disabilities?

 visibility: school_accessibility_deficiency == 1 &&
 school_acessibility_infrastructure == 1

 Item:
description: Ramps
save at: number school_accessibility_infrastructure_ramps

 Item:
description: Adequate space for locomotion
save at: number school_accessibility_infrastructure_locomotion

 Item:
description: Adequate furniture for students with disabilities
save at: number school_accessibility_infrastructure_furniture

 Item:
description: Adequate toilets
save at: number school_accessibility_infrastructure_toilet

Theme: Nutrition – T05
Question Set:

 Question: 5.1.1 – Does the school offers meals to students?
 Item:

save at: domain school_nutrition_meals
1: Yes

 2: No
Question: 5.1.2 – Does the school offers meals for which shifts?

 visibility: school_nutrition_meals == 1
 Item:

description: Morning
save at: number school_nutrition_shift_morning

 Item:
description: Intermediate
save at: number school_nutrition_shift_intermediate

 Item:
description: Afternoon
save at: number school_nutrition_shift_afternoon

 Item:
description: Evening
save at: number school_nutrition_shift_evening

 Question: 5.1.3 – Does the school has a kitchen in conditions of use?
 Item:

save at: domain school_nutrition_kitchen
1: Yes

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

122

 2: No
 3: There is no kitchen
 Question: 5.1.4 – Does the school has a dining hall in conditions of use?
 Item:

save at: domain school_nutrition_dining_hall
1: Yes

 2: No
 3: There is no dining hall
 Question: 5.1.5 – Does the school has a vegetable garden?
 Item:

save at: domain school_nutrition_vegetable_garden
1: Yes

 2: No

Theme: Basic sanitation and hygiene - T06
Question Set:

 Question: 6.1.1 - Does the school offers drinking water to students?
 Item:

save at: domain school_hygiene_water
1: Yes

 2: No
 3: There is no water
 Question: 6.1.2 – In the past 12 months has the school water quality been tested?

 visibility: school_hygiene_water == 1
 Item:

save at: domain school_hygiene_water_quality
1: Yes

 2: No
 Question: 6.1.3 – What is the school main source of drinking water?

 visibility: school_hygiene_water == 1
 Item:

save at: domain school_hygiene_water_source
1: Public facility

 2: Well or spring
 3: Rainwater (cistern)
 4: Weir, lake or river
 5: Other source
 Question: 6.1.4 – Does the school has toilets in conditions of use?
 Item:

save at: domain school_hygiene_toilets
1: Yes

 2: No
 3: There is no bathroom
 Question: 6.1.5 – Does the school has separate bathrooms for boys and girls?

 visibility: school_hygiene_toilets == 1
 Item:

save at: domain school_hygiene_toilets_separate
1: Yes

 2: No
 Question: 6.1.6 – Does the school offers toilet paper in its toilets?

 visibility: school_hygiene_toilets == 1
 Item:

save at: domain school_hygiene_toilets_paper
1: Yes

 2: No
Question: 6.1.7 – Does the school has a sink or lavatory where students can wash
hands after using the toilet or before meals?

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

123

 Item:
save at: domain school_hygiene_sink
1: Yes

 2: No
 3: There is no sink or lavatory

Question: 6.1.8 – Does the school offers soap for students to wash hands after using
the toilet or before meals?

 Item:
save at: domain school_hygiene_soap
1: Yes

 2: No
Question: 6.1.9 – How frequent is the trash collected?

 Item:
save at: domain school_hygiene_trash
1: There is no weekly collection

 2: 1 to 2 days a week
 3: 3 to 4 days a week
 4: 5 to 6 days a week
 5: Everyday

Theme: Security – T07
Question Set:

Question: 7.1.1 – In the past 12 months how frequently the school neighborhood
was considered risky in terms of violence (theft, robbery, assault, gun firing,
substance abuse, homicide)?

 Item:
save at: domain school_violence_freq
1: Never

 2: Rarely
3: Sometimes

 4: Most of the time
5: All the time

Question: 7.1.2 – In the past 12 months, did the school suspend or interrupted class
for safety reasons because of violence?

 Item:
save at: domain school_violence_interruptions
1: Never

 2: Once
3: One time

 4: 2 to 4 times
5: 5 times or more

Theme: Health policy – T08
Question Set:

Question: 8.1.1 – Does the school has any type of committee responsible for defining
or coordinating actions and activities related to health?

 Item:
save at: domain school_health_committee
1: Yes

 2: No
Question: 8.1.2 – Has the school joined the Health in School Program?

 Item:
save at: domain school_health_hsp
1: Yes

 2: No
Question: 8.1.3 – Does the school implements the actions prescribed in the Health
School Program?

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

124

 visibility: school_health_hsp == 1
 Item:

save at: domain school_health_hsp_impl
1: Yes

 2: No
Question: 8.1.4 – Does the school implements the More Education Program actions?

 Item:
save at: domain school_health_mep
1: Yes

 2: No
Question: 8.1.5 – Does the school implements actions together with health teams,
health family teams or basic health attentions teams?

 Item:
save at: domain school_health_actions
1: Yes

 2: No
Question: 8.1.6 – Does the school keeps records of student vaccine shots?

 Item:
save at: domain school_health_vaccine
1: Yes

 2: No
Question: 8.1.7 – Does the school keeps first aid materials in an adequate place?

 Item:
save at: domain school_health_first_aid
1: Yes

 2: No
 3: There is no first aid materials

Question: 8.1.8 – Does the school knows about teachers smoking in the school
premises?

 Item:
save at: domain school_health_teacher_smoking
1: Yes

 2: No
Question: 8.1.9 – Does the school knows about students smoking in the school
premises?

 Item:
save at: domain school_health_student_smoking
1: Yes

 2: No
Question: 8.1.10 – Does the school has any written rule or policy prohibiting the
usage of tobacco on its premises?

 Item:
save at: domain school_health_tobacco_policy
1: Yes

 2: No
Question: 8.1.11 – Does the school has any written rule or policy prohibiting the
usage of alcohol on its premises?

 Item:
save at: domain school_health_alcohol_policy
1: Yes

 2: No
Question: 8.1.12 – Does the school has any written rule or policy prohibiting the
usage of drugs on its premises?

 Item:
save at: domain school_health_drugs_policy
1: Yes

 2: No

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

125

Question: 8.1.13 – Does the school has any written rule or policy prohibiting bullying
on its premises?

 Item:
save at: domain school_health_bullying_policy
1: Yes

 2: No
Question: 8.1.14 – Does the school has any written rule or policy prohibiting fights
on its premises?

 Item:
save at: domain school_health_fights_policy
1: Yes

 2: No
Question: 8.1.15 – Does the school has any written rule or policy prohibiting students
physical punishment on its premises?

 Item:
save at: domain school_health_physical_punishment_policy
1: Yes

 2: No

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

126

Appendix II

Slang model for the 2015 PeNSE survey school questionnaire dictionary

Dictionary for: National Student Health Survey (PENSE2015)
 Measurements
 school_id
 code: V0001
 precision: 8
 scale: 0

 school_type
 code: V0002

 type: number
 precision: 2
 scale: 0
 rule: school.type

 school_uf

 code: V0003
 type: number
 precision: 7
 scale: 0
 rule: school.uf

 school_city

 code: V0004
 type: number
 precision: 7
 scale: 0
 rule: school.city

 school_situation
 code: V0005
 type: number
 precision: 1
 scale: 0

 rule: school.situation

 school_administration

 code: V0006
 type: number
 precision: 1
 scale: 0

 rule: school.administration

 school_public_administration_scope
 code: V0007
 type: number
 precision: 1

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

127

 scale: 0
 rule: school.public_administration_scope

 interviewee_role
 code: E01P29
 type: domain
 precision: 1
 scale: 0

 school_shifts
 code: E01P30
 type: domain
 precision: 1
 scale: 0

 school_fulltime
 code: E01P31
 type: domain
 precision: 1
 scale: 0

 school_boarding
 code: E01P32
 type: domain
 precision: 1
 scale: 0

 school_levels
 code: E01P03a
 type: domain
 precision: 1
 scale: 0

 school_student_qtd
 code: E01P02a
 type: domain
 precision: 1
 scale: 0

 school_room_qtd
 code: E01P04a
 type: domain
 precision: 1
 scale: 0

 school_tuition
 code: E01P01
 type: domain
 precision: 1
 scale: 0

 school_library
 code: E01P05a
 type: domain
 precision: 1
 scale: 0

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

128

 school_computer_lab
 code: E01P06a
 type: domain
 precision: 1
 scale: 0

 school_computer_qtd
 code: E01P33
 type: domain
 precision: 1
 scale: 0

 school_internet
 code: E01P09
 type: domain
 precision: 1
 scale: 0

 school_multimedia
 code: E01P10a
 type: domain
 precision: 1
 scale: 0

 school_council
 code: E01P23
 type: domain
 precision: 1
 scale: 0

 school_council_freq
 code: E01P24a
 type: domain
 precision: 1
 scale: 0

 school_weekend_activities
 code: E01P34
 type: domain
 precision: 1
 scale: 0

school_weekend_activities_planning

 code: E01P35
 type: domain
 precision: 1
 scale: 0

school_sports_quart

 code: E01P15a
 type: domain
 precision: 1
 scale: 0

school_sports_quart_qtd
 code: E01P16a

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

129

 type: domain
 precision: 1
 scale: 0

school_sports_quart_sheltered

 code: E01P17a
 type: domain
 precision: 1
 scale: 0

school_sports_athletics_track

 code: E01P18a
 type: domain
 precision: 1
 scale: 0

school_sports_pool

 code: E01P20
 type: domain
 precision: 1
 scale: 0

school_sports_patio

 code: E01P19
 type: domain
 precision: 1
 scale: 0

school_sports_material

 code: E01P36
 type: domain
 precision: 1
 scale: 0

school_sports_locker_rooms

 code: E01P21
 type: domain
 precision: 1
 scale: 0

school_sports_locker_rooms_separate

 code: E01P37
 type: domain
 precision: 1
 scale: 0

school_sports_activities

 code: E01P22
 type: domain
 precision: 1
 scale: 0

school_sports_competitions

 code: E01P38
 type: domain
 precision: 1
 scale: 0

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

130

school_sports_competitions_internal

 code: E01P39
 type: domain
 precision: 1
 scale: 0

school_accessibility_deficiency

 code: E01P40
 type: domain
 precision: 1
 scale: 0

school_accessibility_deficiency_intelectual

 code: E01P41a
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_autism

 code: E01P41b
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_mental
 code: E01P41c
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_physical
 code: E01P41d
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_hearing

 code: E01P41e
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_visual

 code: E01P41f
 type: number
 precision: 1
 scale: 0

school_accessibility_deficiency_multiple

 code: E01P41f
 type: number
 precision: 1
 scale: 0

school_ accessibility _deficiency_other

 code: E01P41g

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

131

 type: number
 precision: 1
 scale: 0

school_accessibility_sports

 code: E01P42
 type: domain
 precision: 1
 scale: 0

school_accessibility_infrastructure

 code: E01P43
 type: domain
 precision: 1
 scale: 0

 school_accessibility_infrastructure_ramps
 code: E01P44a
 type: number
 precision: 1
 scale: 0

school_accessibility_infrastructure_locomotion

 code: E01P44b
 type: number
 precision: 1
 scale: 0

school_accessibility_infrastructure_furniture

 code: E01P44c
 type: number
 precision: 1
 scale: 0

school_accessibility_infrastructure_toilet

 code: E01P44d
 type: number
 precision: 1
 scale: 0

school_nutrition_meals
 code: E01P45
 type: domain
 precision: 1
 scale: 0

school_nutrition_shift_morning

 code: E01P46a
 type: number
 precision: 1
 scale: 0

school_nutrition_shift_intermediate

 code: E01P46b
 type: number
 precision: 1
 scale: 0

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

132

school_nutrition_shift_afternoon

 code: E01P46c
 type: number
 precision: 1
 scale: 0

school_nutrition_shift_evening

 code: E01P46d
 type: number
 precision: 1
 scale: 0

school_nutrition_kitchen

 code: E01P47
 type: domain
 precision: 1
 scale: 0

school_nutrition_dining_hall

 code: E01P48
 type: domain
 precision: 1
 scale: 0

school_nutrition_vegetable_garden

 code: E01P49
 type: domain
 precision: 1
 scale: 0

school_hygiene_water
 code: E01P50
 type: domain
 precision: 1
 scale: 0

school_hygiene_water_quality

 code: E01P51
 type: domain
 precision: 1
 scale: 0

school_hygiene_water_source

 code: E01P52
 type: domain
 precision: 1
 scale: 0

school_hygiene_toilets

 code: E01P53
 type: domain
 precision: 1
 scale: 0

school_hygiene_toilets_separate

 code: E01P54

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

133

 type: domain
 precision: 1
 scale: 0

school_hygiene_toilets_paper

 code: E01P55
 type: domain
 precision: 1
 scale: 0

school_hygiene_sink

 code: E01P56
 type: domain
 precision: 1
 scale: 0

school_hygiene_soap

 code: E01P57
 type: domain
 precision: 1
 scale: 0

 school_hygiene_trash
 code: E01P58
 type: domain
 precision: 1
 scale: 0

school_violence_freq
code: E01P25

 type: domain
 precision: 1
 scale: 0

school_violence_interruptions
code: E01P59

 type: domain
 precision: 1
 scale: 0

school_health_committee
code: E01P60

 type: domain
 precision: 1
 scale: 0

school_health_hsp
code: E01P61

 type: domain
 precision: 1
 scale: 0

school_health_hsp_impl
code: E01P62

 type: domain
 precision: 1
 scale: 0

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

134

school_health_mep
code: E01P63

 type: domain
 precision: 1
 scale: 0

school_health_actions
code: E01P64

 type: domain
 precision: 1
 scale: 0

school_health_vaccine
code: E01P65

 type: domain
 precision: 1
 scale: 0

school_health_first_aid
code: E01P66

 type: domain
 precision: 1
 scale: 0

school_health_teacher_smoking
code: E01P67

 type: domain
 precision: 1
 scale: 0

school_health_student_smoking
code: E01P27

 type: domain
 precision: 1
 scale: 0

school_health_tobacco_policy
code: E01P28a

 type: domain
 precision: 1
 scale: 0

school_health_alchool_policy
code: E01P68

 type: domain
 precision: 1
 scale: 0

school_health_drugs_policy
code: E01P69

 type: domain
 precision: 1
 scale: 0

school_health_bullying_policy
code: E01P70

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

135

 type: domain
 precision: 1
 scale: 0

school_health_fights_policy
code: E01P71

 type: domain
 precision: 1
 scale: 0

school_health_physical_punishment_policy
code: E01P72

 type: domain
 precision: 1
 scale: 0

DBD
PUC-Rio - Certificação Digital Nº 1621791/CA

